

Scholarly Publisher
RS Global Sp. z O.O.

ISNI: 0000 0004 8495 2390

Dolna 17, Warsaw, Poland 00-773
Tel: +48 226 0 227 03

Email: editorial_office@rsglobal.pl

JOURNAL World Science

p-ISSN 2413-1032

e-ISSN 2414-6404

PUBLISHER RS Global Sp. z O.O., Poland

ARTICLE TITLE OPTIMIZATION OF CROSS-PLATFORM APPLICATIONS
USING THE REACT LIBRARY

AUTHOR(S) Bezverhiy Olexandr, Kutsenko Olexandr

ARTICLE INFO
Bezverhiy Olexandr, Kutsenko Olexandr. (2024) Optimization
of Cross-Platform Applications Using the React Library. World
Science. 3(85). doi: 10.31435/rsglobal_ws/30092024/8218

DOI https://doi.org/10.31435/rsglobal_ws/30092024/8218

RECEIVED 01 July 2024

ACCEPTED 14 September 2024

PUBLISHED 16 September 2024

LICENSE

This work is licensed under a Creative Commons Attribution
4.0 International License.

© The author(s) 2024. This publication is an open access article.

World Science 3(85), 2024

RS Global 1

OPTIMIZATION OF CROSS-PLATFORM APPLICATIONS
USING THE REACT LIBRARY
Bezverhiy Olexandr
doctor science, professor, National Transport University, Ukraine

Kutsenko Olexandr
Postgraduate, National Transport University, Ukraine

DOI: https://doi.org/10.31435/rsglobal_ws/30092024/8218

ARTICLE INFO
Received: 01 July 2024
Accepted: 14 September 2024
Published: 16 September 2024

ABSTRACT

In today's world, with the growing use of mobile devices, the importance
of creating cross-platform applications that provide high performance
and quality of user experience has increased significantly. Improving the
creation of such applications using React and React Native opens up
wide opportunities for developers due to the possibility of code reuse,
high development speed and ease of innovation, and is especially
relevant because it concerns not only the technological aspects of
development, but also economic efficiency, quality of user experience
and the speed of introducing innovations to the software market. Open
source and active community communication allow rapid identification
and resolution of issues, development of new features and enhancements,
and the sharing of knowledge and experience between developers. This
creates a positive environment for innovation and growth, promotes
rapid technological progress, and improves the quality of end products.
The paper analyzes the key aspects and challenges associated with the
creation of cross-platform applications, analyzes the main types of
optimizations at different levels of development, including the
component level, the state and data level, the level of working with APIs
and external data, as well as the loading and code level. Special attention
is paid to the integration of synchronous and asynchronous rendering to
achieve optimal performance and user experience. Highlights the
benefits of flexible state management using state managers, as well as
the importance of image and media optimization to improve overall
website performance.
The article notes the role of the developer community in the process of
improvement and innovation. Developers who master these technologies
and optimize their application can create products that not only meet the
requirements of the time, but also form new standards in the field of
mobile and web development. Further research and integration of the
latest technologies into the development process of cross-platform
applications will have a significant impact on the software industry.

KEYWORDS

React, React Native, Cross-Platform
Applications, Optimization,
Software Development.

Citation: Bezverhiy Olexandr, Kutsenko Olexandr. (2024) Optimization of Cross-Platform Applications Using the
React Library. World Science. 3(85). doi: 10.31435/rsglobal_ws/30092024/8218

Copyright: © 2024 Bezverhiy Olexandr, Kutsenko Olexandr. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Problem Statement: Using React and React Native libraries for cross-platform app
development stems from several trends:

World Science 3(85), 2024

2 RS Global

1. Increase in mobile traffic and use of mobile apps: There is a consistent increase in the
number of mobile device users worldwide, which compels the development of apps capable of
satisfying the diverse needs of this audience. Cross-platform capabilities become a key response
to this challenge, allowing developers to create applications that effectively function across
different platforms.

2. Need to reduce time and costs of development: Developing separate app versions for each
platform is time-consuming and expensive. Using React and React Native allows for significant
optimization of resources, as developers can utilize the same code base to create apps that operate on
different operating systems.

3. Demand for high performance and quality of applications.
4. Need for continuous updates and support of applications. Market conditions and user

requirements are constantly changing, hence applications require regular updates and modernization.
Scientific research in optimizing the use of JavaScript, developing new development patterns,

improving application architecture, and integrating with other technologies and platforms are critically
important for achieving this goal. Collaborative efforts of scientists, developers, and the community
can lead to significant progress in creating effective, accessible, and high-quality cross-platform
applications that meet the needs of modern users and the software market.

Analysis of the main types of optimizations for a React application:
Optimization of React applications is a key element in increasing performance, ensuring

interface operation speed, and improving the overall user experience. There are several levels at which
React application optimization can be performed, each requiring the application of specific approaches
and techniques. Let's consider the main types of optimizations at different levels:

Component Level:
Reusing components helps reduce code duplication and enhances code readability and

maintainability.
Using React.memo for class components and React.PureComponent for functional

components allows avoiding unnecessary renders by comparing props and state.

If a component displays the same result with the same props and state, it can be wrapped in a

call to React.memo to enhance performance in some cases by memorizing the result. React.memo only
checks if props have changed. If a function wrapped in React.memo has useState or useContext hooks
in its implementation, it will still re-render when state or context changes. By default, it only shallowly
compares complex objects in the props object. If you want to control the comparison process, you can
also provide a custom comparison function by placing it as the second argument.

Using shouldComponentUpdate allows control over the rendering process by comparing
current and next props and state.

Asynchronous Rendering with React.Suspense and Lazy Loading:
React.Suspense and React.lazy offer a mechanism for asynchronous component rendering,

allowing components to wait for necessary data or other components before they are displayed. This is
particularly useful for improving performance through lazy loading of components that are not needed
immediately after the app loads.

React.lazy takes a function that must call a dynamic import(). It must return a promise that
resolves to a module with a default export containing a React component.

A lazy component should then be rendered within a Suspense component body. This allows
us to display fallback content (e.g., a loading indicator) while we wait for the lazy component to load.

Using React.memo and React.PureComponent to prevent unnecessary renders and the
shouldComponentUpdate method to control component updates.

World Science 3(85), 2024

RS Global 3

State and Data Level:
State Management: Efficient state management using contexts or state managers like Redux

or MobX can significantly reduce the number of renders and simplify data flow.
Redux library is used to manage the state of the application, which allows reducing the

amount of code and making the application easier to understand and extend.
Lazy Data Loading: Applying lazy loading for data and components can improve app load

time and resource use efficiency.
API Level and External Data:
Caching Responses: Caching server responses can reduce the number of requests to the

server and speed up data display to the user.
Optimizing Requests: Avoid excessive or unnecessary server requests by aggregating data or

using debounce/throttle for event handling.
Loading and Code Level:
Code Splitting: Using code splitting allows dividing the code into smaller parts that can be

loaded as needed, reducing app load time.
Lazy Loading Components: React.lazy and Suspense allow organizing the lazy loading of

components that are not critical for the initial rendering.
Using Web Workers for Heavy Task Processing: For processing complex calculations

without blocking the main UI thread, Web Workers can be used, which helps improve interface
responsiveness.

Image and Media Optimization:
Image compression, using formats optimized for the web (such as WebP), and lazy

loading of media can significantly improve performance by reducing the volume of data
transferred.

Optimizing React applications at all these levels allows achieving significant performance
improvements and ensuring a better user experience. It is important to note that optimization is a
process that requires continuous analysis, testing, and refinement.

Application of Synchronous and Asynchronous Rendering for optimization:
Using synchronous and asynchronous rendering in React should be balanced to provide

optimal performance and user experience. Synchronous rendering can be effective for
displaying content that is immediately available or for very critical parts of the interface, while
asynchronous rendering is ideal for optimizing the loading of additional data, modules, or
components that are not necessary for the initial display.

In React, both synchronous and asynchronous rendering can be used for different parts
of your application. This is possible thanks to the state management and rendering mechanisms
that React provides, allowing developers to optimize performance and user experience.

Synchronous Rendering: This standard approach in React involves components being
rendered one after another in the main execution thread. When a component receives new props or its
state updates, React re-renders the component and its children synchronously. This means that the user
interface is blocked until the entire rendering process is completed.

Asynchronous Rendering: Allows components to await the loading of data or other resources
without blocking the user interface. This can be implemented using features like React.lazy for lazy
loading components and React.Suspense, which allows components to "wait" for necessary content
before rendering. Concurrent Mode is another feature that allows React to work on multiple tasks
asynchronously, improving the responsiveness of the app.

Examples of using synchronous and asynchronous rendering for optimization:
Synchronous rendering is used for rendering the main skeleton of the app or critically important
components that must be immediately available to the user. Asynchronous rendering is used for
loading large components, modules that require additional data from the server, or functionality that is
not used immediately after the app loads (e.g., modal windows, additional pages).

World Science 3(85), 2024

4 RS Global

By wisely using these methods, significant improvements in app performance and user
experience can be achieved, reducing load times and interface responsiveness. React provides flexible
tools for optimizing rendering, and effectively using them allows achieving high performance even in
large and complex applications.

Asynchronous component rendering in React is performed using a combination of React.lazy
and <Suspense>. This allows delaying the loading of a component until it is truly needed, for example,
during routing or deferred rendering of parts of the interface.

import React, { Suspense } from 'react';
const LazyComponent = React.lazy(() => import('./LazyComponent'));

function App() {
 return (
 <div>
 <Suspense fallback={<div>Loading...</div>}>
 <LazyComponent />
 </Suspense>
 </div>
);
}

Synchronous rendering is more straightforward and easy to understand, but it can lead to

delays in interface responsiveness, especially during large calculations.
Asynchronous rendering (Concurrent Mode) provides better interface responsiveness but

requires more careful management of states and side effects in components.
Batching Updates: In synchronous rendering, state updates often occur immediately and one at

a time. Asynchronous rendering allows more efficiently grouping updates, making rendering more
efficient and less costly in terms of performance.

Figure 1. Comparison of Performance Between Synchronous and Asynchronous Rendering.

World Science 3(85), 2024

RS Global 5

Figure 2. Comparison of Performance Between Synchronous and Asynchronous Rendering in

Different Application Operating Modes.

Integrating synchronous and asynchronous rendering enhances development efficiency and

enables responsiveness to rapidly changing market demands. The implementation of innovative
approaches such as React's Concurrent Mode, deep integration with PWAs, and the expansion of
<Suspense> capabilities opens new horizons for enhancing the functionality and accessibility of
applications.

Based on the analysis, it can be concluded that further research and integration of the latest
technologies in the development process of cross-platform applications will have a significant impact
on the software industry. Developers who master these technologies and optimize their application can
create products that not only meet the demands of the times but also set new standards in the field of
mobile and web development.

REFERENCES

1. React.memo. Access mode: URL: https://uk.legacy.reactjs.org/docs/react-api.html#reactmemo.
2. React.lazy. Access mode: URL: https://uk.legacy.reactjs.org/docs/code-splitting.html#reactlazy.
3. Abramov D. (2015). Getting Started with Redux. URL access mode: https://egghead.io/courses/getting-

started-with-redux.
4. Kang, J., Kim, Y., & Kim, D. (2017). A study on the implementation of cross-platform mobile application

using react-native.// Journal of the Korea Academia-Industrial cooperation Society, 18(4), P.155-167.
5. UseEffect. Access mode: URL: https://uk.legacy.reactjs.org/docs/hooks-reference.html#useeffect.

