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1. Introduction.

Problem solving for shells and plates is performed on the basis of classical and refining theories,
using equations of three-dimensional elastic theory and on the basis of variants of mathematical theory.
Classical and clarifying theories are based on various physico-geometric assumptions [1-3, 8, 12, 15, 17,
20, 22, 23]. The limits of using these theories for different classes of problems require further research. The
most common in practical use are the theories of the Tymoshenko-Reisner type [20, 22, 23] and their
various modifications [3, 8, 12, 17]. Clarifying theories include theories based on specific deformation
models [11]. The main drawback of all the clarifying theories is the inability to increase the accuracy of the
solution of the problems within these theories.

The use of three-dimensional elasticity theory in the analytical solution of boundary value
problems for plates and shells [6, 14] is too much of a problem for mathematical physics, since all the
components of the SSS and boundary conditions are functions of three coordinates. At the same time,
three-dimensional SSS occurs in thick plates and shells, in the field of local, discontinuous and non-
smooth loads, under the action of other SSS concentrators. And so there is an urgent need to develop
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and construct theories that take into account all the components of the SSS and boundary effects as a
functions of the three variables. And so that these theories can be used to analytically solve boundary
value problems. with the required accuracy. These qualities are satisfied by the variants of MT, which
are based on a mathematical approach in the image of the components of the SSS with infinite rows in
transverse coordinates. These theories are devoid of physico-geometric assumptions. Different
mathematical series are used: tensor [9], power [13], using the Lezhran-dra polynomials [4, 5, 7, 10,
16, 18, 19, 24]. Three-dimensional problems are reduced to two-dimensional by different methods:
operating [4, 5, 24], variational [7, 10, 16, 18, 19], others [15]. The MT variants have different
accuracy depending on the approach of reducing three-dimensional problems to two-dimensional ones
and the method of representing the SSS in the form of mathematical series.

In this article, MSA is developed in solving boundary value problems for transversely
isotropic shallow shells of arbitrary thickness based on the MT variant [25-28]. Shells can be
subjected to arbitrary transverse loads. All SSS components that are functions of three variables are
taken into account. The MT is based on the representation of the SSS components in the form of
infinite rows with a transverse coordinate using Legendre polynomials. The transverse normal and
tangent stresses are approximated by taking into account the three-dimensional DE equilibrium theory
of elasticity such that the boundary conditions in the stresses on the face surfaces are satisfied exactly.
Three-dimensional problems for shells are reduced to two-dimensional problems based on the Reisner
variational principle [21]. This method of constructing the MT variant showed efficiency and high
accuracy [25, 26]. As the number of additives in the mathematical series increases, the order of the
systems of equations and the complexity of solving them increases, but the accuracy of the solution
increases. The MSA makes it possible to reduce the complex boundary-value problem for the shell to
simpler boundary-value problems for the corresponding plates with symmetric and oblique
deformation relative to the median plane.

2. Problem statement.

We study the transversal isotropic shallow shell of constant arbitrary thickness h h in a
rectangular coordinate system X,y,z. The surface of the isotropy coincides with the median surface.

The axes X, y belong to the plan of the shell, and the axis z is perpendicular to the plane of the plan of
the shell and is directed in the direction of the convexity (up) (—h/2<z<h/2). On the upper and

lower surfaces of the shell there is a static transverse load @;(x,y) and q,(x,y) directed downwards.
All SSS components are functions of three coordinates. Boundary conditions on the front surfaces:
o,(z=h12)=-q(X,y); o,(z=-h/2)=0,(X,y); 0 (z=2h/2)=0,(z=1h/2)=0 (1)
The transverse loads on the upper and lower surfaces are depicted as the sum of two additions:
oblique symmetric q/2 and symmetric p/2 loads relative to the middle surface:
o,(z=%h/2) =(Fa(x,y) - p(x,¥))/2, p(%,y) = (X% y) - a2(x,y), q(X, ¥) = 0y (X, ¥) + A2 (X, Y) -
The boundary conditions on the side surface may be different.

The displacement components are represented by the Fourier-Legendre series in the
coordinate z:

U(xy.z) =kZOF’k (2z/h)u(x,y), (U,Viu,vi); W(X, sz)zl;lpk—l(ZZ/h)Wk(X’ y, @
where B, (2z/h) is Legendre polynomials; u,,v,,w, - sought components in displacements.

If in (2) in tangential displacements we take into account terms with indices k=0,1,2,...,n,
then we call this approximation KO-n. If we take into account additives with k =0,1,2,3 indexes, this
is an approximation of K0123 or K0-3.

Since the shell is of arbitrary thickness, tangential displacements are taken into account in the
shear deformations of y,,, 7, [1] (in the theory of thin shells they are neglected):

ex =0U[OX+KW ; &y =V Ioy+kW ; &, =0W/dz; y,, =0U [0y +0V/oX;
Vg =OW/0x+0U loz—-KkU , (x,y; U >V; ki =k5), (k =1/R;; ki =k;, 1=12),
where R;, R, isthe principal radii of curvature of the middle surface of the shell. Clarifying additives
in the expressions for the transverse angular deformations contain kq, k.

Here are general structural formulas for stress components [25], which derive from the DE
system of the spatial theory of elasticity and the Reisner variational equation:
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oy (X Y,2) = 2Pty GyZ(X,y,Z)z zpityi; o, (%Y,2) =2 P sy,
i=0 i=0 i=0
. o ®)
ox(X,¥,2) = 2P Sy, (0x = Ty38xi = Syi) Oyx (X%, Y,2) = D2 Pty
i=0 i=0
tyxi-functions that depend on the displacements of u, (X,Y), v, (X, y), W (x,y) and

mechanical- geometrlc parameters (MGP).

3. Displacements, stresses and boundary conditions in the KO-n approximation

3.1. Components of displacements and stresses in the shell. The displacement components
are determined according to (2):

where t,; ..

n n
U(xy,z) =D B.(2z/h)u(x,y), (U, V;iu,Vve); W(X,y,z) =D P (2z/h)w (X, ), 4)
k=0 k=1
The stress components according to (3):
n+1 n+l n+2
oy (X Y,2) = 2R tyi5 0y, (% y,2) = ZF’.ty.,G (% y,2) = 2 B s;i;
i=0 i=0 (5)
n+2 n+2

O-x(x Y Z) - ZP Sxis y(X Y Z) - ZPI Syu O-xy(x Y, Z) - ZPI tyXI
i=0
The transverse normal and tangent stresses satlsfy exactly the condltlons (2).
For the approximations K0-3 and KO0-5, the functions are given in [26].
3.2. Boundary conditions. The boundary conditions are obtained from the Reisner variation
equation:

(I){ZE,(ZJ )(( si lx g Iy =Xg)Ouj +(tyy I +8yly = Ysj)Ovj) +
s) J
(6)
n-1
+Z‘6(2h )(tXJIX+t ~24)0Wj,)}ds =0
j

In(6) Iy, 1, — isthe cosines of the angles between the normal vector to the lateral surface and the
coordinate axes; S - contour of the shell; X ;(X,Y),Ysj(X,¥), Zsj(X,y) - members in mathematical series

of the image of the external loading X, (x,y,2), Y, (X,y,2), Z, (X, Yy,z) by Legendre polynomials:
h/2

X5 (X, y)=(2j+1)( jxv(x, y,2)Pj(2z/h)dz)/h, (x4 = ¥g; X, = Y,; j=01..,n);
i h/2 Q)
Zg;(x,y)=(2j+1)( IXV(X, y,2)Pj(2z/h)dz)/h, (j=01,..,n-1),
~h/2

where Z, must balance the transverse load on the upper and lower surfaces of the shell.

Equations (6) and (7) yield different boundary conditions. Here are some of them.
1) Boundary conditions in displacements. Only the displacement components U - (X, Y, z),

V, (X,Y,2), Wy (X,Y,2z) are known on the side surface I" of the shell. Boundary conditions:

uj (Xv y) :qu(X’ y)y Vi (Xv y) :Vj]"(x’ y)v (J :0111---’n);

wi(x y)=wjr(x,y), (=1...n); X,y €S,
where
2j+1

ujr(xy)= IUF(X, y,2)P;(2z/h)dz, (U =V, .Uy >Vp) (1 =01..,n));

(8)
wir(xy)= IWr(X y,2)Pja(22/h)dz, (j=1,...,n).

2) Boundary conditions in stresses. Only the external load X, (x,y,z), Y,(XV,2),
Z,(x,y,z) is specified on the side surface. Then we have the following boundary conditions:
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Sxj (W x + 1ty Yy = X5 5 (X Y)i by (G V) I+ 8y j (W) Ly = Y5 (X, ),

(J=0L...n); t); (X, Y +t,; (X NIy, =25;(x,y), (J=01..,n-1); X,y €S. ©
3) The boundary conditions for the freely fixed at the edges of the shells:
Vi(x=0,y)=v;(x=a,y)=0,(j=01...n); w;j(x=0,y) =w;(x=a,y) =0, (j =1...,n);
Sxj(x=0,y)=sxj(x=a,y)=0, (j=0.1..,n); 10)
uj(x,y=0)=uj(x,y=b)=0,(j=0L..,n)w;(x,y=0)=w;(x,y=0)=0, (j =1..,n);
syj(x,y=0)=s,;(x,y=b)=0,(j=01...,n).
4) Boundary conditions for rigidly secured shells:
uj(x=0,y)=uj(x=a,y)=0,vj(x,y=0)=v;(x,y=b)=0, (j=0.1..,n); 1)

In the approximations K01, KO0-3, KO0-5, to obtain displacements, stresses and boundary
conditions, it is necessary to put n=1; n=3; n=5 in (4) - (11), respectively.
4. The method of successive approximations
4.1. The KO0-3 approximation. The system of equilibrium DE has the 22nd order:
DJ-‘lu0 + Djlzv0 + Dj’3ul + Dj’4vl + Dj’5u2 + Dj,Gv2 + Dj’7u3 +

. (12)
+DjgV3+DjoWs + Dj1oW, + Dj1aW5 = Dqu(x, y), (j=1,2,..,11),
where
2 2 . 22 '
Dy, = —+ — +kqlyyg, Diy= ——, D3 =Kklyyq, D4 =0,
11~ 71 o2 12 6'y2 1lixo: P12 =721 oxdy 1,3 = Kl Mg
. o2 : d d

D= —+kiliyo, Dig= ——, Dy =Kiljya, Dyjga=0, D;g=Kiys—, Dyjqp = —_,
1,5 = V131 PN 1l1x2 .6 = 7131 oxdy 1,7 111x3 1,8 1,9 Ml&x 10 = 7151 x

Dss =kis 2 Ding = 70 2, Dy = 111 2o O Ko, Dyy=0, Dy = k)
111 = 1w3&’ lpq_7u0&1 2,2—711262+71116y +Kalyo: Doz = 2,4 = Raly1
02 02 : 0
Dos =711 —— oxdy ' 7/1318)/_Jr k; |1y21 D;7=0, Dyg = k2|1y3a D29 =Kowa —
0 0 op 52 0%
D10 =751 —» Doga =Kowz— Daopg =7u0 = ,3111 + P12 —5 + Piza +Kiloxa /15,
oy " oy Py ay? "
0° 0? 0°
D,, = ——  Dac =kiKay, Dag=0, Dy, = —+ +Kilya /5, Dag =
34 = P oxoy ' D38 = ¥akauz: Dag 37 = P o Praz +Kiloys 38 = Pat —— Xy
0 9 aq
D3 = 5151&1 D310 =kKawo — o » D3 = ﬂlGl , D3pg = ﬁul&’
az 02 o
D4 = 5112 + Bia1 —5 + Bus + Ko 29119, D5 =0, Dyg = = KoKayz, Dy7=Pas—— (13)
% oxdy
02 : 0 0 0

aq.
8= ﬂlslerﬁm +koloy3 /5, Dyg = ﬂ15151 Ds10 = Kawz R D11 ::B16151 Dapg = ﬂu157

5 2 - 22 .
Dc: = >+ + +(K)Ks,», Deg = ——, Dc; =kikg 3, Deg =0,
55 =717 T 7 Y 7333 + (K1) “Ksy2, D5 = 7341 oxay ' D57 = ¥aKsus: Dsg
5 5 8 op
Dsg = ksm&’ Ds.10 =7’351&1 D511 = ksm&: D5pq :7/u2&’
o* o '\2 ' 0
Des =732 —5 ol T2 Y + 7333 + (K2) Koz, Dg7 =0, Dgg =Koksys, Dgg = kama :
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0 0 op o? o?
D610 = 7351 — De11 =Kews = Dspq =7u2 = D77 =Ba3 ,5332 +ﬂ333+(k) Kzus
6,10 351 8)/ 6,11 6w3 ay 6pq u2 ay 7,7 l ay 1 Tu
0 0 0 oq
D — = - D = k D D = —’
7.8 ﬂ341 a 8y 7,9 ﬂ351 ox 7,10 TW2 "~ Gx 711 — 18361 7pq ﬂuS
az 02 0 0

8= ﬂ332 + P31 — Gy + Pz + (kz) Kgva Dgg = f351 — ay , Dg10 = Kgwz — ay , Dg11 = ﬂsel oy )

19/ 2 )
Depq = Aus aq » Do,g = B551V" + gy Dg10 =Nwzs Dog1 = Bse1V™ + gy Dgpg =Kgp P+ Bud,

Dio.10 = 551V + 7552 + Tawz+ Dio11 = Towz» Diopg = Kiogd+ w2 P Disas = BesrV’ + Beoz + Faws:
Di1pg = Busd +KigpP-
It is shown that the differential matrix of the DE (12) system is symmetric (Dj; = Dj; ). In (13):

1 h
=h(dy ——d;0€), =hG, =h(G+dyv— d e =——0d08,,
11 (do 10 10820) + 7112 7121 ( 0 10 10820) 7131 10 1022

h ko h
V131 = _E d10€22 5 Ky = (dokyy — 10 dloezo + h11)h V151 = —Edlo%z )
3h Kio
Kiws = h13 d10e22)h Yuo = 20 —— i ; Kapg = (dokyy, — 110 dip€20 + h11)h
k h 3 2
Kowg = h13 12 dloezz)h P = 3( 0 _%dloeﬂ) P2 =§hG Pz = _Fllxl’
h 19 h 2
Pior = 3 (G +dgv _7—0d10931) » kgyp = EG B = 70 dio€s3s Bizs = _ﬁ hys, Bisi=—+— hll '
h k, 1 2 h 2
Kawz = 3 dokyy + gl hy, — 70 hdyo0sy, Bier = “h hy3 —%dlo%s y B = o1 hdy ;
h k. 1 1 1 6
Kawz = 3 dokyy + EZ hyy 70 hdyo0sp » 7331 = 5 (do + 2 d10€22) s 7332 = 5 hG, ys33 = o lox2
2 h 1 3 . h K,
Ksy2 =Keyz = _EG h, ¥3u =§(G + doV+7d10922): Ksyz = EG , Kgyp = Eklzdloezo —ﬁG h,
1,h 6 k h 2 0 1
VL= (7 dioUzp — h hp2) , Kswg = 3%; hdype,, + 5 kyydo + 15 khG | yyp = 0 hdyg;
h k, 1,k 2 . .
Kows = g k12010820 _ﬁ hG , Kews = 5 (#2 hd;gep, +kyhdg + 3 kohG),
1 6 3
Pan = (do TS d10933) Paz = 7 —hG, Ba3 = —ﬁbxa: k7uz =Kgyg = —%G h,
1 6 1.1 '
P == (G +dov+ 5 dio€s3) s Pas1 = 7 hgy, Kzwz = 3 (g hdyo0s; —3kihy,),
6 1 : h
Pe1 = 7(E hdyo0s3 ——h33) Kgwz = (5 hd,0s; —3kohy0) s Bug = Edlo: Bos1 =1,
k122 kip k122
fw = h(k,dg —Edmezo) s Mg = 0 hdyp02 , Bss1 =My Beer = —tug, hus = T hdyo€,,
3Ky, ke,
kgp = 20 hdy, Saa=-1, 7551 = ~z hzz V52 = ——Q22 » owp = h( kydg ——dlo%z)
Ky, 2k, 2 . 3
Fows = —?(ezz +Ehd10%3) » Kiog =—% hle Yw2 = — Pee1 = 15 hG , Pesr = ~35 a3
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h kl22 3 k 1) 7 !
"3w3=g(kvdo +7d10922)1 ﬂw3=_71 ki1p = 10 L2 hdyg; by =—Gh, I“'13_——(3h hy, —6Gh,
7 Y ’ AN 14
ha1 ZEG hy hgs =hy, (X=>y; ki >k3) ;) Uy =—7dgokyp, Opp = “hd Up3 = 2d30kyy
20
66 22 7
O3 =—11d3oKip, gz =———— €y =—Tdgg; € =2d3y; €3 =—11d3y; €33 =—d3; €p=——;
hd 3 2

63q :—%, dO = E/(l_Vz),dlo = EV’/(E’(]._V)), d20 = (1—2d10V')/E’, d30 = le /d20; ;

le = kl + sz, kZV = k2 + klv, kV = klklv + k2k2V y

where E,E',v,v',G,G" is the mechanical parameters of the transversely isotropic material.

The DE system (12) is not divided into two systems that describe independently symmetric
and obligue deformation. This indicates the interdependence of symmetric and oblique deformation of
the shells. For plates, DE systems are separated.

To obtain the MSA equations, we transfer all the additions of the left-hand sides of equations
(12) containing the curvatures of the shell to the right-hand side. We will have the following system in
the i =1,2,... approximation:

Ljqud’ +L;,v8) +Ljaul + LJ M+ L sud + L ev) L ud) + 1)
+L; 8v3 +L; 9Wl +L; 10W ) 4 L; ﬂwé') = Lf';jd)(x, y), (i=12,..,10),
where
2 52 2

Lii= 71118)(_2+7112 y Lio =701 —= oxoy | » Liz=L4=0,

2 o2 )
— Lig Li;=Lg=Lge=0, L= —, L1171 =0,
o2 =V oxoy 1,7 = 8 = L1 1,10 = 7151 x|

—l) _ ' ’ '
= 7u0 P.x — (K lixoUg +Kq hxaUy +Kq lixoUy +KiliygUs +Kypg Wy o +KyygWa o

52 52 52 52
|— =N 5t L23 = |—24 =0, I—25 =031 6 = 7131 5 1
oy? oxdy ' oy

ox?
0
L2,7 = |—2,8 = |—2|9 =0, I—2,10 = 7/15151 |—2,11 =0,

|—1,5 = 7131

@i )(i,l) .

) (i-1
|-(2I p(% =7u0 Py — (K2 l1yoVo + K3 liyaVa +K5 b1y oV + K5 lyaVa +KowgWa y + Ko gWs, y) ),
az o 02 02
I—33—ﬂ111 ﬁnzay + Pz, 34_ﬂ12188y L35 =L3e =0, L37_ﬁ1316x + Pz,

az a
= , L =0, Ly, =
Lsg = lisn —— D ﬂ151 310 311 = Pre1 — 5

) i) .

Lgpci = Burlx = (KilxaUy +KiloxaUy /5+ k1 KauzUz +Kilox3Us /5+ k3w2W2,x)(I Y,
az 02 o? o2

Lag= ,3112 +Pui—5+Puss Las =0, Lye=0, L7 = ,3131 Lyg = fra1 —5 + Przs.
oy® oxay oy?

0 0
|—4,9 = ﬂ151—v I-4,10 =0, I—4,11 = ﬁlel— )
oy oy
-1 ' ' ' ' i-1) .
Lgp% = By — (Kalyyavi +Kaloyqvi 15+ K5 KgyoVp +Kaloyavs 15+ k4W2W2,y)(I )
02 02 02

Lss = 73318)(—2+7/332 yﬂ’m , Lsg = 7341%1

0
L5,7 = L5,8 = L5,9 =0, I-5,10 = 7/351&' I-5,11 =0,
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_1 1 1 ’ ’ i— .
L(Slp(; =7u2 P x = (Ki lixaUg + KikgyoUy + (k)? Ksy2Up + kiKs,3ug + KswiWyx + k5w3W3,x)(I Y,
2 2 5
Les =732 — o 7’3318y—+7333, Le7 =Lgg =Lgo =0, L61O—7/35lay’ Le11 =0,

-1 ' ' r\2 ' i—
L%'pé =7u2 Py = (K l1y oV + KakayoVa + (K2)“ Koy Vo +KoKsyaVs +KeyaWy y + kew:sws,y)(I Y
02 02 0 0
L, = —+ , Ly g = , L7g = —., L =0,

77 =Ps1— o + Baz2 o7 Bazzs Log =Pass —— oy e Pas1 o 740
0 L2
L7a1 =ﬂ361& )_ﬂusqx (K1 hixa Ug +Ki Loy Uy /5 +KiKsy 3 Up + (Kf)? Kyya Ug + K7 yaWo, O
az 02 0 0
Lgg = ﬂ332 + P15 o7 + P33 Lo = ,33515: Lg1o =0, Lgy1 = ﬂ3615’

nglg = Buzd,y (kz 1y3Vo +Kalayavi /5+Koksy 3V, + (k5)%Kgy3 Va +Kgy Wy, v) D,

2
Loo =Bss1V° s Loao =0, Loas = BserV’, Liozo = 7s51V> + 653+ Lioa1 =0, Liras = BeerV2 + Besa

(i-1) _ (i-1) .
Lypg = Kop P+ Buad — (Kiwalo x +KawaVo,y +Ksualz x +KewiVa,y + ws Wi + Frwz W + iz W3)© 5

(i-1) (i-D)
Liopg =7w2P+ k1oqd — (KawaUrx + KawaVay +Kzw2Us x + Kgw2Vay + waWa + FowaWa + Foy3Ws3)

(i-1) i1
'—11 oq = Ki1p P+ Bl — (Kiwz Uox +Kawa Vo,y + Kswz Uz x + KewaVa,y + waWi + FoyaWa + r3w3W3)(I )
In the zero approximation (i =0), the system of equations (12) has the following form:

LJ 1u(()°) +L; zv(()o) +L. 3u1(°) +L; 4v1(0) + LJ- 5u(o) +L. 6v£0) +L. 7u§°) (15)
15
+Ljgvs” + Ly oW + Lyows” + Lyl =L g (x,y), (j =1.2,...,1),

where
I-1pq =7Yu0Pxs L2pq =7YuoP,y: I-3pq = Bulx; L4pq zﬂulq,y ; I-5pq =7u2Pxs I-6pq =7Yu2Py:
L7 pq = ﬂuSq,x; Lg pq = :Bu3q,y; Lo pq = kgpq P+ Aud; Lo pg =7w2Pt kquq ; I—1lpq = k11p P+ Pusd -
Equations 1, 2, 5, 6, 10 of systems (14) and (15) (10th order) describe symmetric deformation
of the corresponding plates, and 3, 4, 7-9, 11 - skew symmetric deformation (12th order).

4.2. Approximation K013. In approximation K013, the DE (16th order) system consists of the
first-fourth, seventh-ninth, and eleventh equations (12). In addition, you need to put p(x,y)=0 and

consider only the functions of ug,vg,u;,Vy, Uz, V3, Wy, Wy, g . System (12) for i =1,2,... then looks like:

Ljqud’ +Ljov8) + Ly aul + L v + L ul +

(16)
+Lavs) + Lyow + L) = LD (x,y), (1=123478911),
where
02 02 02
Lig =7’1118X_2+7112 ? |—12 =V121 A~ x 8y Lais =0, L4 =0, Ly 7 =0, Lig =0, Lio =0,
) .
L1 =0, I ) = —(kq lxoUo +Kq hyqUy +Kq lyygUs +Kyyq Wy +KgyaWa x) D,
02 02
I—2,2 =7’1128X_2+7111ya |—2,3 =0, I-2,4 =0, |—2,7 =0, L2,8 =0, L2,9 =0, |—2,11 =0,
-1 ' ' ' i-1) .
L(2Ip(; =—(k3 lyoVo + K3 liygVi + K3 l1yaVs + Koy Wy y + kzw?,Ws,y)(I Y,
62 52 52 52 52
'—33—ﬂ111 ﬁnzay + Pz, 34—5121aay 5131—+,5133: 38_ﬂ13laay
8 - ’ ’ ' i-1).
Lo = fis1 — X L = ﬂlGl ' L3Ip(; = Bt x — (KilixaUy +KilayqUy 75+ Kilpy3us 15,
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02 02 0° 02 0
Lsa = ﬂnz ﬂm 5+ Puzs Loz =Pass —— Lag =Bizsr—5 + Pizss Lag =Pisi—»
oy* oxay * oy° oy
Loy =B 9 LU = B g — (KplyygVy + Kyly gV 15+ Kply, avs /5) D
411 = P61 oy 4pq u1d,y 2l1y1iV1 +Kaloy1Vy 212y3Vs3
Loy =P oot g Lo . = Bas1—
17= Pzt Py o2 P L7g =P —— Xy L79 = Fas1 o
0 = ' ' ' i-1).
L711 = Paer — PV L(7Ip]3 = Buallx — (K] lixa Ug +K{ Ly Uy 15+ (K{) *kgya ug)
az 0? 0 0
Lgg = ﬂ332 + P31 —5 +Pas Leg =Pas1— Le11 = Pas1 —»
oy? oy oy
Lgplq) = ﬁu3Q,y —(kalyy3Vo +Kalpyavy 15+ (k5)*Keya V)™

2 2 (i1 i)
Log =Bss1V™, Log1 = PserV7, Lgp(; = Poad— (KpyaUo x +KawiVo,y + fiwa Wi + Fiw3 wy) (D
2 i-1 i—
L1111 = PeerV" + Pes3 » L§I1 p)q = Puad — (Kpwz Uo x +Kawa Vo y + FwaWy + F3aWs)
In the zero approximation (i=0)the system of DE (j =1,2,3,4,7,8,9,11) is as follows:
L; 1u0 ) ¢ L, 2v ) 4 Lj,3u1(°) + Lj’4v1(°) + Lj,7u +L 8v§°) + Ljygwl(o) + Ljyllwéo) =L; IDq(x, y), (17)

where Llpq = L2 pqO; I-3pq Zﬂulq,x; L4 pq :ﬁulq,y’ I-7 pq —ﬂusqx; I-8pq Zﬂusq,y; Lo pq — Pud -

Equations 1, 2 of systems (16) and (17) describe the symmetric deformation of the plates, and
3,4, 7-9, 11 — skew symmetry. Similarly, DE systems are obtained for other approximations.

The systems DE (15), (17) coincide for the corresponding plates., And (14) and (16) are
structurally different only in the right parts. Therefore, each of the systems (14)—(17) can be divided
into systems that separately describe the vortex boundary effect, the internal SSS, and the potential
boundary effect. Methods of transformation and decoupling of such systems are given in [26].

In MSA, at each approximation, the general solutions must satisfy the same set boundary
conditions. In the method of perturbations of geometric parameters [27] in a null approximation by a
small parameter, the general solutions must satisfy the given boundary conditions, and in subsequent
approximations the corresponding homogeneous boundary conditions.

4.3. Numerical results. The effectiveness of MSA was investigated in a boundary value problem
for transversally isotropic shallow shells, freely fixed on the lateral surface (10). The transverse skew
symmetric load q(X,y) =q,,, Sin(mz x/a)sin(nzy/b) (g, —const) (DE (16) and (17) systems are

considered). The following MGP were accepted: G'/G=01 E'/E=La=b; Vv =v=03
m=n=Lk{#0; k) #0; R =R,; R;/a=10; 20; 40; h/a=1/3;1/5;1/10. Numerical results show
that in the zero approximation of the difference between the SSS components and the results obtained by
the direct solution of the DE equilibrium system, for o, (X,y,z)/q(x,y) is less than 3.9%, for

W (x,y,2) E/(q(X, y)h) - less than 1.1%. In the first approximation for the difference does not exceed 1%.

This indicates a high convergence of MSA.

5. Conclusions.

1) The method of sequential approximations in MT of transversely isotropic shallow shells of
arbitrary thickness is developed. In the zero approximation of MSA, the systems of equations for
shells coincide with the equations for the corresponding plates. In the following approximations, the
left parts are the same and coincide with the equations for the plates, and the right parts of the
equations depend on the curvatures and components in the displacement components of the previous
approximations.

2) By this method, the boundary value problem for the shell is reduced to a sequence of
boundary value problems for the corresponding plates with symmetric and oblique deformation. Then
inhomogeneous high-order DE can be reduced to low-order equations. MSA makes it easier to find a
common solution for shallow shells.

3) Numerous studies have shown a high convergence of results.

4) MSA can be used to solve problems for shallow shells based on other theories.
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