<table>
<thead>
<tr>
<th>JOURNAL</th>
<th>World Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-ISSN</td>
<td>2413-1032</td>
</tr>
<tr>
<td>e-ISSN</td>
<td>2414-6404</td>
</tr>
<tr>
<td>PUBLISHER</td>
<td>RS Global Sp. z O.O., Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARTICLE TITLE</th>
<th>THE TASK OF OPTIMIZING OIL LOADING IN TANKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR(S)</td>
<td>Dimitri Namgaladze, Lena Shatakishvili, Tornike Kiziria</td>
</tr>
<tr>
<td>DOI</td>
<td>https://doi.org/10.31435/rsglobal_ws/30062023/8000</td>
</tr>
<tr>
<td>RECEIVED</td>
<td>30 April 2023</td>
</tr>
<tr>
<td>ACCEPTED</td>
<td>16 June 2023</td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>20 June 2023</td>
</tr>
</tbody>
</table>

LICENSE

This work is licensed under a Creative Commons Attribution 4.0 International License.

© The author(s) 2023. This publication is an open access article.
THE TASK OF OPTIMIZING OIL LOADING IN TANKERS

Dimitri Namgaladze
Doctor of technical science, Professor, Georgian Technical University

Lena Shatakishvili
Candidate of technical science, Professor, Georgian Technical University

Tornike Kiziria
Candidate of technical science, Professor, Georgian Technical University

DOI: https://doi.org/10.31435/rsglobal_ws/30062023/8000

ARTICLE INFO

Received: 30 April 2023
Accepted: 16 June 2023
Published: 20 June 2023

KEYWORDS

Tankers, Optimizing Oil Loading, Optimization Algorithm, Terminal.

ABSTRACT

The paper discusses the task of optimizing oil loading into tankers, using the Baku-Sufsi oil pipeline as an example. The goal is to develop an algorithm for building an optimization method for a tanker from an oil terminal, which represents the cost from the pipeline as a Fourier series. The problem of the hydraulic differential equation for loading oil flow from the terminal to the tankers is discussed. After integration, the equation does not have an obvious solution and must be solved approximately by an iterative or graphical method. As a result, factors and regularities are identified, which are combined with real oil parameters. Therefore, for the first time in Georgia, an original methodology for building an optimization algorithm for oil loading from a terminal to a tanker was developed.

Citation: Dimitri Namgaladze, Lena Shatakishvili, Tornike Kiziria. (2023) The Task of Optimizing Oil Loading in Tankers. World Science. 2(80), doi: 10.31435/rsglobal_ws/30062023/8000

Copyright: © 2023 Dimitri Namgaladze, Lena Shatakishvili, Tornike Kiziria. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Introduction.

Consider the task of optimizing the loading of oil into tankers, using the Baku-Sufsi oil pipeline as an example (pic. 1). From the commissioning of the Baku-Sufsi oil pipeline to November 2021, 700 million barrels of oil have been transported. As of November 30, 2021, 1,000 tankers have been loaded [1, 2, 3].

In this regard, we will discuss the construction of an optimization algorithm (method) from an oil terminal to a tanker. This problem is not new, however, we decided to improve the process in the oil sector, which is characterized by certain approaches. Our goal is to use the algorithm we have developed to build an optimization methodology for a tanker from an oil terminal, which represents the cost from the pipeline as a Fourier series.
Fig. 1. Scheme of Sangachali-Supsa main oil pipeline and view of Supsa oil terminal.

According to the last five years, the amount of crude oil entering the main oil pipeline "Baku-Sufsa" is about 4.2 mln.

Consider the task of loading oil into tankers from the terminal, the scheme of which is given in pic. at 2 [4].

Q* - the constant charge coming from the mains, obtained by means of the Fourier series; q(t)- the cost of loading into a tanker, the graph of which changes over time is shown in Fig. 2. H₀ and Ω are reservoir height and cross-sectional area. It is implied that the time interval between the arrival of tankers is T₁, part of which t₀ is used for loading. Let's determine the time during which the depth in the reservoir will change from H₀ to 0, i.e. then, it is impossible to continue the process of pouring oil into tankers.

Fig. 2. Top - chart of loading oil from the terminal into a tanker. Bottom - graph of changes in cost of loading oil into a tanker.

Let's say that in dt time, the depth in the reservoir has changed over time by dt and dh. (as the level in the reservoir decreases q* > Q*). Then the volume balance equation will have the following form [11]: (1)

Where q(t) - Fourier series expansion is obtained.

\[
q(t) = \frac{4q^*}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin^2 \left(\frac{n\pi t_0}{2T} \right) \sin \left(\frac{n\pi t}{T} \right),
\]

Where q* = const
Therefore, we will have

\[
\left(Q^* - \frac{4q^*}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin^2 \left(\frac{n \pi T_0}{2T} \right) \sin \left(\frac{n \pi t}{T} \right) \right) dt = \Omega dh
\]

(3)

After integration, we finally get the equation:

\[
\frac{8q^* T}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin^2 \left(\cos \frac{n \pi t}{T} - 1 \right) = Q^* t + W_0
\]

(4)

Where \(W_0 \) is the Volume of the reservoir.

(4) The equation does not have an obvious solution and it must be solved approximately by an iterative or graphical method. Let’s consider the following parameters: \(T=200\,hr; \ t_0=40\,hr; \ q^*=500\,m^3/hr; \ Q^*=1000/hr; \ W_0=140000m^3. \)

The graphical result of the calculation performed on the computer is shown in pic. at 3.

![Graphical solution of the equation.](image)

Therefore, the received result \(t \equiv 37\,hr. \) shows us that, the parameters for the process are chosen incorrectly and for the proper function we need to increase \(T. \) After choosing specific values for \(T \) and conducting above-mentioned processes, we can come to an optimal Value for \(T. \)

Actually, the terminal consists of several reservoirs. In such a case, the solution scheme does not change, only \(W_0 \) does, the total volume of all four reservoirs.

The given scheme of the solution is fair even in the case when different water tankers arrive at different time intervals, only in this case, it is necessary to (1) change the image with the appropriate Fourier expansion of the process.

Thus, factors and regularities are identified, which are combined with real oil parameters. Therefore, for the first time in Georgia, an original methodology for building an optimization algorithm for oil loading from a terminal to a tanker was developed.

REFERENCES