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ABSTRACT 

An edge-coloring of a graph G with consecutive integers c1,…,ct is called an 
interval t-coloring, if all colors are used, and the colors of edges incident to 
any vertex of G are distinct and form an interval of integers. A graph G is 
interval colorable if it has an interval t-coloring for some positive integer t. 
In this paper, we consider the case where there are restrictions on the edges, 
and the edge-coloring should satisfy these restrictions. We show that the 
problem is NP-complete for complete and complete bipartite graphs. We 
also provide a polynomial solution for a subclass of complete bipartite 
graphs when the restrictions are on the vertices.  
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Introduction. All graphs considered in this paper are undirected, finite, and have no loops or 

multiple edges. For a graph 𝐺, let 𝑉(𝐺) and 𝐸(𝐺) denote the sets of vertices and edges of 𝐺, 

respectively. The degree of a vertex 𝑣 ∈ 𝑉(𝐺) is denoted by 𝑑𝐺(𝑣). The maximum degree of vertices 

in 𝐺 is denoted by Δ(𝐺). 

A complete graph [1] is a graph in which every pair of distinct vertices is connected by an 

edge. The complete graph having 𝑛 vertices is denoted by 𝐾𝑛. A bipartite graph is a graph whose 

vertices can be divided into two disjoint and independent sets 𝑈1 and 𝑈2 such that every edge connects 

a vertex in 𝑈1 to a vertex in 𝑈2. A complete bipartite graph is а bipartite graph such that two vertices 

are adjacent, if and only if they are in different partite sets. When the sets have sizes 𝑛 and 𝑚, the 

complete bipartite graph is denoted by 𝐾𝑛,𝑚. 

An edge-coloring of a graph 𝐺 is an assignment of colors to the edges of the graph so that no 

two adjacent edges have the same color. An edge-coloring of a graph 𝐺 with colors 1, … , 𝑡  is an 

interval t-coloring if all colors are used, and the colors of edges incident to each vertex of 𝐺 form an 

interval of integers. A graph 𝐺 is interval colorable if it has an interval t-coloring for some positive 

integer 𝑡. The set of all interval colorable graphs is denoted by 𝔑. The concept of an interval edge-

coloring of a graph was introduced by Asratian and Kamalian [2]. This means that an interval t-

coloring is a function 𝛼: 𝐸(𝐺) → {1, … , 𝑡} such that for each edge 𝑒 the color 𝛼(𝑒) of that edge is an 

integer from 1 to 𝑡, for each color from 1 to 𝑡 there is an edge with that color and for each vertex 𝑣 all 

the edges incident to 𝑣 have different colors forming an interval of integers. For a graph 𝐺 ∈ 𝔑, the 

least and the greatest values of 𝑡 for which 𝐺 has an interval 𝑡-coloring are denoted by 𝑤(𝐺) and 

𝑊(𝐺), respectively.  
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The set of integers {𝑎, 𝑎 + 1, … , 𝑏}, 𝑎 ≤ 𝑏, is denoted by [𝑎, 𝑏]. Let 𝐼𝑘 be the set [1, 𝑘] of 

integers, then 2𝐼𝑘 is the set of all the subsets of 𝐼𝑘. We will denote by 𝜏(𝐼𝑘) the set of all the elements 

from 2𝐼𝑘 that are an interval of integers. More formally 

 𝜏(𝐼𝑘) = {𝑠: 𝑠 ∈ 2𝐼𝑘 , 𝑠 𝑖𝑠 𝑎 𝑛𝑜𝑛 𝑒𝑚𝑝𝑡𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠}. The greatest common divisor of two 

positive integers 𝑎, 𝑏 is denoted by 𝜎(𝑎, 𝑏).  

For an interval coloring, 𝛼 and a vertex 𝑣, the set of all the colors of the incident edges of 𝑣 is 

called the spectrum of that vertex in 𝛼 and is denoted by 𝑆𝛼(𝑣). The smallest and the largest numbers 

in 𝑆𝛼(𝑣) are denoted by 𝑆𝛼(𝑣) and 𝑆𝛼(𝑣), respectively. 

We consider the following two problems: 

Problem 1: Given a graph 𝐺 and for some 𝑘 restrictions on the edges 𝑅: 𝐸(𝐺) → 2𝐼𝑘. Find an 

interval edge-coloring 𝛼: 𝐸(𝐺) → 𝐼𝑘 such that 𝛼(𝑒) ∈ 𝑅(𝑒) for all 𝑒 ∈ 𝐸(𝐺). 

Problem 2: Given a graph 𝐺 and for some 𝑘 restrictions on the vertices 𝐿: 𝑉(𝐺) → 2𝐼𝑘. Find 

an interval edge-coloring 𝛼: 𝐸(𝐺) → 𝐼𝑘 such that 𝑆𝛼(𝑣) ⊆ 𝐿(𝑣) for all 𝑣 ∈ 𝑉(𝐺). 

We show that the Problem 1 is NP-complete for complete and complete bipartite graphs. For 

complete bipartite graphs we provide a polynomial solution for the Problem 2 when 𝜎(𝑛, 𝑚) = 1. 

Interval edge-colorings have been intensively studied in different papers. Lower and upper 

bounds on the number of colors in interval edge-colorings were provided in [3, 4] and the bounds were 

improved for different graphs: planar graphs [5], r-regular graphs with at least 2 ⋅ 𝑟 + 2 vertices [6], 

cycles, trees, complete bipartite graphs [3], n-dimensional cubes [7,8], complete graphs [9, 10], Harary 

graphs [11], complete k-partite graphs [12], even block graphs [13]. In [14], interval edge-colorings 

with restrictions on edges were considered. In this case there can be restrictions on the edges for the 

allowed colors. In [15, 16], interval edge-colorings with restrictions on the spectrums were considered.  

NP-completeness of interval edge-coloring with restrictions on edges for complete 

bipartite graphs 

Here we consider the Problem 1 for complete bipartite graphs 𝐾𝑛,𝑚. We will show that the 

problem is NP-complete even for the case of 𝐾𝑛,𝑛 where the restrictions are from [1, 𝑛]. Finding an 

interval 𝑛-coloring that meets the restrictions, is the same as finding an edge-coloring that meets the 

restrictions, since 𝑑𝐾𝑛,𝑛
(𝑣) = 𝑛 for all 𝑣 ∈ 𝑉(𝐾𝑛,𝑛) and all the spectrums are going to be the interval 

[1, 𝑛]. The problem becomes the following:  

Problem 3: Given a complete bipartite graph 𝐾𝑛,𝑛 and some restrictions on the edges 

𝑅: 𝐸(𝐾𝑛,𝑛) → 2𝐼𝑛 . Find an edge-coloring 𝛼: 𝐸(𝐾𝑛,𝑛) → 𝐼𝑛 such that 𝛼(𝑒) ∈ 𝑅(𝑒) for all 𝑒 ∈ 𝐸(𝐾𝑛,𝑛). 

A Latin square is an 𝑛 × 𝑛 matrix 𝑀 with entries from the set {1, … , 𝑛} such that no column or 

row contains any repeated entry. 

A partial Latin square is an 𝑛 × 𝑛 matrix 𝑀 with entries from the set {0, 1, … , 𝑛} such that no 

column or row contains any repeated entry other than 0. 

Problem 4: Let 𝑀 be an 𝑛 × 𝑛 partial Latin square. Is it possible to extend 𝑀 to a Latin 

square, i.e., can we replace each zero entry in 𝑀 by an element of {1,2, … , 𝑛} in such a way that no 

row or column contains a repeated entry? 

In [17], Colbourn showed that the Problem 4 is NP-complete. We now show that the Problem 

3 is NP-complete too.  

Theorem 1: The Problem 3 of finding an edge-coloring for a 𝐾𝑛,𝑛 with given restrictions 

𝑅: 𝐸(𝐾𝑛,𝑛) → 2𝐼𝑛 is NP-complete. 

Let 𝑀 be an 𝑛 × 𝑛 partial Latin square. Let 𝑀𝑟,𝑐 be the element in the row 𝑟 and the column 𝑐. 

We will create a complete bipartite graph 𝐺 = 𝐾𝑛,𝑛 with restrictions 𝑅: 𝐸(𝐺) → 2𝐼𝑛 such that finding 

an edge-coloring in that graph is equivalent to extending the partial Latin square into a Latin square.  

Let 𝑉1 = {𝑢1, … , 𝑢𝑛} be the set of vertices in the first part (|𝑉1| = 𝑛), and let 𝑉2 = {𝑣1, … , 𝑣𝑛} be the 

set of vertices in the second part (|𝑉2| = 𝑛). The vertices 𝑉1 will represent the rows of the matrix 𝑀 

and the vertices 𝑉2 will represent the columns of the matrix 𝑀. Let 𝑐 = 𝑀𝑖,𝑗. If 𝑐 ≠ 0 then we take 

𝑅(𝑢𝑖, 𝑣𝑗) = {𝑐} (we should use the color 𝑐 for the edge (𝑢𝑖, 𝑣𝑗)). If 𝑐 = 0 then we can take 

𝑅(𝑢𝑖, 𝑣𝑗) = [1, 𝑛]. Note that we could remove from 𝑅(𝑢𝑖, 𝑣𝑗) all the other colors that appeared in that 

row or that column, but since we are going to find an edge-coloring we do not have to do it. 
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If �̅� is an extended Latin square of 𝑀, then taking 𝛼(𝑣𝑖, 𝑣𝑗) = �̅�𝑖,𝑗 satisfies the restrictions 𝑅 and 

is an edge-coloring (since in a Latin square the elements of each row and each column are different). 

Let 𝛼 be an edge-coloring that satisfies the restrictions 𝑅. Taking �̅�𝑖,𝑗 = 𝛼(𝑢𝑖, 𝑣𝑗) satisfies the 

restrictions of Latin square since the colors are from [1, 𝑛], the existing colors of 𝑀 are colored in their 

respective colors, and for each row and each column, the elements are different (since they are the 

incident edges of a vertex from 𝐾𝑛,𝑚). Hence the Problem 3 is NP-complete. 

Corollary 1: The Problem 1 of finding an interval edge-coloring for a complete bipartite 

graph 𝐾𝑛,𝑚 with given restrictions 𝑅: 𝐸(𝐾𝑛,𝑚) → 2𝐼𝑛+𝑚−1  is NP-complete. 

The Problem 3 is a special case of finding an interval edge-coloring for complete bipartite 

graphs. From the Theorem 1 we know that the Problem 3 is NP-complete, hence the more general 

problem is also NP-complete. 

NP-completeness of interval edge-coloring with restrictions on edges for complete graphs 

Here we consider the Problem 1 for complete graphs and show that the general problem is NP-

complete. We will show that the problem is NP-complete even for the case of 𝐾𝑛 where the 

restrictions are from [1, 𝑛 − 1]. Finding an interval (𝑛 − 1)-coloring that meets the restrictions, is the 

same as finding an edge-coloring that meets the restrictions, since 𝑑𝐾𝑛
(𝑣) = 𝑛 − 1 for all 𝑣 ∈ 𝑉(𝐾𝑛) 

and all the spectrums are going to be the interval [1, 𝑛 − 1]. The problem becomes the following:  

Problem 5: Given a complete graph 𝐾𝑛 and some restrictions on the edges 𝑅: 𝐸(𝐾𝑛 ) → 2𝐼𝑛−1. 

Find an edge-coloring 𝛼: 𝐸(𝐾𝑛) → 𝐼𝑛−1 such that 𝛼(𝑒) ∈ 𝑅(𝑒) for all 𝑒 ∈ 𝐸(𝐾𝑛). 

From [4], it is known that 𝑤(𝐾2⋅𝑚) = 2 ⋅ 𝑚 − 1 = Δ(𝐾2⋅𝑚) and 𝐾2⋅𝑚+1 is not interval 

colorable. Hence we are interested only in 𝑛 = 2 ⋅ 𝑚. Any edge-coloring 𝛼: 𝐸(𝐾2⋅𝑚) → 𝐼2⋅𝑚−1 can be 

represented with a matrix 𝑀, such that 𝑀𝑖,𝑗 = 𝛼(𝑣𝑖, 𝑣𝑗) (𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐾2⋅𝑚)), and 𝑀𝑖,𝑖 = 2 ⋅ 𝑚 (we color 

the diagonal with the color 2 ⋅ 𝑚 to have a full matrix). Note that 𝑀 is a symmetric Latin square. Any 

symmetric 2 ⋅ 𝑚 × 2 ⋅ 𝑚 Latin square 𝑀 with diagonal elements equal to 2 ⋅ 𝑚 can be transformed 

into an edge-coloring of 𝐾2⋅𝑚 by taking 𝛼(𝑣𝑖, 𝑣𝑗) = 𝑀𝑖,𝑗.  

Definition: Let 𝑛 = 2 ⋅ 𝑚. An 𝑛-diagonal Latin square is a symmetric 𝑛 × 𝑛 Latin square 𝑀 

such that 𝑀𝑖,𝑖 = 𝑛 for all 1 ≤ 𝑖 ≤ 𝑛. 

Note that 𝑛-diagonal Latin squares are only defined for even 𝑛. In fact, any symmetric Latin 

square with odd 𝑛 should contain all the colors 1, … , 𝑛 in its diagonal, since each number 1, … , 𝑛 

should be used an odd number of times, and in a symmetric matrix, their counts are the same above 

and below the diagonal.  

The problem of completing an 𝑛-diagonal partial Latin square can be reduced to the Problem 5. 

For an 𝑛-diagonal partial Latin square 𝑀 we can construct a complete graph 𝐾𝑛 and restrictions 𝑅 the 

following way: Let 𝑐 = 𝑀𝑖,𝑗 (𝑖 ≠ 𝑗). If 𝑐 ≠ 0 then we take 𝑅(𝑣𝑖 , 𝑣𝑗) = {𝑐}, otherwise, if 𝑐 = 0 then we 

take 𝑅(𝑣𝑖, 𝑣𝑗) = [1, 𝑛 − 1]. In this case finding an edge-coloring 𝛼 that meets the restrictions is 

equivalent to completing 𝑀. To construct the Latin square �̅� from 𝛼 we do the following: we take �̅�𝑖,𝑖 =

𝑛, and we take �̅�𝑖,𝑗 = 𝛼(𝑣𝑖, 𝑣𝑗) if 𝑖 ≠ 𝑗. Since 𝛼 is an edge-coloring �̅� is a Latin square. Similarly, if we 

have the completed Latin square �̅� we can construct the edge-coloring 𝛼 by taking 𝛼(𝑣𝑖 , 𝑣𝑗) = �̅�𝑖,𝑗. 

In [18], it was shown that the problem of completing a symmetric partial Latin square is NP-

complete, but since the 𝑛-diagonal Latin squares are a subclass of symmetric Latin squares, we will 

provide proof for this case. 

Theorem 2: The problem of completing an 𝑛-diagonal partial Latin square is NP-complete. 

We will reduce the problem of completing a symmetric partial Latin square of order 2 ⋅ 𝑚 − 1 

to the problem of completing a 2 ⋅ 𝑚-diagonal partial Latin square. 

Let 𝑀 be any (2 ⋅ 𝑚 − 1) × (2 ⋅ 𝑚 − 1) symmetric partial Latin square. We construct a new 
(2 ⋅ 𝑚) × (2 ⋅ 𝑚) matrix 𝑇 by taking the diagonal of 𝑀 and adding it as the last row and the last 

column of 𝑇 and by assigning the value 2 ⋅ 𝑚 to the elements in the diagonal of 𝑇. Fig. 1 illustrates 

that transformation.  
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Fig. 1. The transformation of a symmetric partial Latin square 𝑀 to a 2 ⋅ 𝑚-diagonal partial Latin 

square 𝑇. 

Since 𝑇 should be symmetric, the last row will be the same as the last column, and we can 

later transform completed 𝑇 to a completed 𝑀 by taking the diagonal of 𝑀 the last row of 𝑇 (without 

the last element). Hence completing the 2 ⋅ 𝑚-diagonal partial Latin square 𝑇 is equivalent to 

completing the symmetric partial Latin square 𝑀, which means the problem of completing an 𝑛-

diagonal partial Latin square is NP-complete. 

Corollary 2: The Problem 5 of finding an edge-coloring of a complete graph 𝐾𝑛 with given 

restrictions 𝑅: 𝐸(𝐾𝑛) → 2𝐼𝑛−1 is NP-complete.  

This follows from the fact that the problem of completing an 𝑛-diagonal prtial Latin square can be 

reduced to the Problem 5. From the Theorem 2 the problem of completing an 𝑛-diagonal partial Latin 

square is NP-complete, hence the Problem 5 is also NP-complete. 

Corollary 3: Let 𝑡 = 𝐸(𝐾2⋅𝑚). The Problem 1 of finding an interval edge-coloring of a 

complete graph 𝐾2⋅𝑚 with given restrictions 𝑅: 𝐸(𝐾2⋅𝑚) → 2𝐼𝑡 is NP-complete. 

The Problem 5 is a special case of finding an interval edge-coloring of complete graphs with 

given restrictions 𝑅 on the edges. From the Corollary 2, the Problem 5 is NP-complete, which means 

the general problem is also NP-complete. 

Interval edge-coloring of complete bipartite graphs with restrictions on vertices 

Here we consider the Problem 2 for complete bipartite graphs 𝐾𝑛,𝑚 where 𝜎(𝑛, 𝑚) = 1. From 

the Theorem 1 of [3], for 𝐾𝑛,𝑚 it is known that 𝑤(𝐾𝑛,𝑚) = 𝑛 + 𝑚 − 𝜎(𝑛, 𝑚) and 𝑊(𝐾𝑛,𝑚) = 𝑛 +

𝑚 − 1. This means that if 𝜎(𝑛, 𝑚) = 1 then the number of colors should be 𝑡 = 𝑛 + 𝑚 − 1. For 

simplicity, we will assume that the restrictions 𝐿 on the vertices are from [1, 𝑡] (𝐿(𝑣) ⊆ [1, 𝑡] for all 

𝑣 ∈ 𝑉(𝐾𝑛,𝑚)). The problem becomes the following: 

Problem 6: Given a complete bipartite graph 𝐺 = 𝐾𝑛,𝑚 with 𝜎(𝑛, 𝑚) = 1 and given 

restrictions on the vertices 𝐿: 𝑉(𝐺) → 2𝐼𝑡 (𝑡 = 𝑛 + 𝑚 − 1). Find an interval edge-coloring 𝛼: 𝐸(𝐺) →
𝐼𝑡 such that 𝑆𝛼(𝑣) ⊆ 𝐿(𝑣) for all 𝑣 ∈ 𝑉(𝐺). 

Let 𝑉1 be the set of vertices in the first part (|𝑉1| = 𝑛), and let |𝑉2| be the set of vertices in the 

second part (|𝑉2| = 𝑚). Let 𝛼 be any interval edge-coloring of 𝐾𝑛,𝑚 with 𝑛 + 𝑚 − 1 colors. 

If we take the vertices of 𝑉1 and sort them in the ascending order of 𝑆𝛼(𝑢) then the spectrums will 

look like this: [1, 𝑚], [2, 𝑚 + 1], … , [𝑛, 𝑛 + 𝑚 − 1]. Similarly, if we take the vertices of 𝑉2 and sort them in 

the ascending order of 𝑆𝛼(𝑣) then the spectrums will look like this: [1, 𝑛], [2, 𝑛 + 1], … , [𝑚, 𝑛 + 𝑚 − 1]. 

It means that for each part, the spectrums differ from each other. Now imagine that for the vertices 

𝑢1, … , 𝑢𝑛 (𝑢𝑖 ∈ 𝑉1) we know the spectrums are  [1, 𝑚], … , [𝑛, 𝑛 + 𝑚 − 1] and for the vertices 𝑣1, … , 𝑣𝑚 

(𝑣𝑖 ∈ 𝑉2) we know the spectrums are [1, 𝑛], [2, 𝑛 + 1], … , [𝑚, 𝑛 + 𝑚 − 1] then we can construct an 

interval edge-coloring 𝛼 such that all the spectrums are correct. The coloring could be 𝛼(𝑢𝑖, 𝑣𝑗) = 𝑖 + 𝑗 −

1. It is easy to check that this coloring is an interval edge-coloring and satisfies the spectrum restrictions. 

We can solve the problem with restrictions 𝐿 independently for the two parts. In the first part, 

we need to find vertices 𝑢𝑝1
, … , 𝑢𝑝𝑛

such that [𝑖, 𝑖 + 𝑚 − 1] ⊆ 𝐿(𝑢𝑝𝑖
). In the second part we need to 
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find vertices 𝑣𝑞1
, … , 𝑣𝑞𝑚

 such that [𝑖, 𝑖 + 𝑛 − 1] ⊆ 𝐿(𝑣𝑞𝑖
). Since these are similar problems, we will 

show how to solve the problem for one part. The problem becomes the following: 

Problem 7: Given vertices 𝑢1, … , 𝑢𝑛 and for each of the vertices a list of colors 𝐿(𝑢𝑖) ⊆
[1, 𝑛 + 𝑚 − 1]. Find a permutation 𝑝1, … , 𝑝𝑛 of the indices 1, … , 𝑛 such that [𝑖, 𝑖 + 𝑚 − 1] ⊆ 𝐿(𝑢𝑝𝑖

) 

for all 1 ≤ 𝑖 ≤ 𝑛 or determine that there is no such permutation. 

We will construct a bipartite graph 𝐹 the following way: The left part of the graph will be the 

vertices 𝑢1, … , 𝑢𝑛, the right part will be the vertices 𝑔1, … , 𝑔𝑛 (where 𝑔𝑖 represents the interval [𝑖, 𝑖 +
𝑚 − 1]). For each 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛 we will connect the vertex 𝑢𝑖 with the vertex 𝑔𝑗 if and 

only if [𝑗, 𝑗 + 𝑚 − 1] ⊆ 𝐿(𝑢𝑖). Fig. 2 illustrates the bipartite graph 𝐹. 
 

 

Fig. 2. The bipartite graph 𝐹 constructed by the vertices 𝑢1, … , 𝑢𝑛 and  

the intervals 𝑔1 = [1, 𝑚], … , 𝑔𝑛 = [𝑛, 𝑛 + 𝑚 − 1]. 

If we can find a perfect matching [19] in 𝐹, then it is possible to find indices 𝑝1, … , 𝑝𝑛 such 

that [𝑖, 𝑖 + 𝑚 − 1] ⊆ 𝐿(𝑢𝑝𝑖
) for all 1 ≤ 𝑖 ≤ 𝑛. The edges (𝑢𝑝𝑖

, 𝑔𝑖), 1 ≤ 𝑖 ≤ 𝑛 will be all the edges of 

the matching. 

The complexity of the solution for the Problem 7 will be 𝑂(𝑛3) for finding a perfect matching. 

Note that for each list 𝐿(𝑢𝑖) we can find in 𝑂(𝑛) all the intervals [𝑗, 𝑗 + 𝑚 − 1] ⊆ 𝐿(𝑢𝑖) using a sweep 

line algorithm [20]. For the Problem 7 the complexity of the algorithm will be 𝑂(𝑛3 + 𝑚3). 
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