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ABSTRACT 

The main goal of this work is to provide a consistent set of general-
purpose algorithms for analyzing singularities applicable to all types of 
equations. We present the main ideas and algorithms of power 
geometry and give an overview of some of its applications. We also 
present a procedure that allows us to distinguish all branches of a 
spatial curve near a singular point and calculate the parametric 
appearance of these branches with any degree of accuracy. For a 
specific case, we show how this algorithm works. 
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Introduction. Many problems in mathematics, physics, biology, economics, and other 

sciences are reduced to nonlinear equations or systems of such equations. The equations may be 

algebraic, ordinary differential or partial differential and systems may comprise the equations of one 

type, but may include equations of different types. The solutions of these equations and systems 

subdivide into regular and singular ones. Near a regular solution, the implicit function theorem or its 

analogs are applicable, which gives a description of all neighboring solutions. Near a singular solution, 

the implicit function theorem is inapplicable, and until recently, there had been no general approach to 

the analysis of solutions neighboring the singular one. Although different methods of such analysis 

were suggested for some special problems. 

Main Part. We develop a new calculus based on Power Geometry [1, 2, 3, 4]. Here we will 

consider only to compute local and asymptotic expansions of solutions to nonlinear equations of 

algebraic classes as well as to systems of such equations. But it can also be extended to other classes 

of nonlinear equations for such as differential, functional, integral, and integro-differential [7]. 

Ideas and algorithms are common for all classes of equations. Computation of asymptotic 

expansions of solutions consists of 3 following steps (we describe them for one equation f = 0). 

1. Isolation of truncated equations 𝑓𝑗
(𝑑)

= 0 by means of generalized faces of the convex 

polyhedron Г(𝑓), which is a generalization of the Newton polyhedron. The first term of the expansion of 

a solution to the initial equation 𝑓 = 0 is a solution to the corresponding truncated equation 𝑓𝑗
(𝑑)

= 0. 

2. Finding solutions to a truncated equation 𝑓𝑗
(𝑑)

= 0, which is quasi homogenous. Using 

power and logarithmic transformations of coordinates we can reduce the equation 𝑓𝑗
(𝑑)

= 0 to such a 
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simple form that can be solved. Among the solutions found we must select appropriate ones that give 

the first terms of asymptotic expansions. 

3. Computation of the tail of the asymptotic expansion. Each term in the expansion is a 

solution of a linear equation that can be written down and solved. 

Elements of plane Power Geometry were proposed by Newton for algebraic equations (1670). 

Space Power Geometry for a nonlinear autonomous system of ODEs was proposed by Bruno (1962) 

[1]. Thus, now it is exactly 50 years for the Newton polyhedron. 

It is clear that this calculus cannot be mastered during this paper. We will try to summarize our 

ideas and in the next paper, we will consider this problem and give algorithms for nonlinear systems of 

algebraic equations. 

Algebraic equations [2, 3]. 

In this paper, we consider a polynomial depending on three variables near its singular point 

where the polynomial vanishes with all its first partial derivatives. We propose a method of 

computation of asymptotic expansions of all branches of the set of roots of the polynomial near the 

mentioned singular point. Now there are three types of expansions. The method of computation Is 

based on space Power Geometry. All examples are for polynomials in two variables. 

Let 𝑿 = (𝑥1, 𝑥2, 𝑥3) ⊂ 𝑅3𝑜𝑟 𝐶3 𝑎𝑛𝑑 𝑓(𝑿) be a polynomial. 𝑿0 is called to be singular for the 

set ℱ = {𝑿 ∶ 𝑓(𝑿) = 0}  if all the partial derivatives of the first order of the polynomial f vanish at the 

point 𝑿0  and 𝑓(𝑿0) = 0. 

Consider the following problem. Near the singular point 𝑿0 for each branch of the set ℱ, find a 

parameter expansion of one of the following three types [6]. 

Type 1 

𝑥1 = ∑ 𝑏𝑘𝑣𝑘,        𝑥2 = ∑ 𝑐𝑘𝑣𝑘, 𝑥3 = ∑ 𝑑𝑘𝑣𝑘,   

∞

𝑘=1

  

∞

𝑘=1

∞

𝑘=1

 

where 𝑏𝑘, 𝑐𝑘 , 𝑑𝑘  are constants. 

Type 2 

𝑥1 = ∑ 𝑏𝑝𝑞𝑢𝑝𝑣𝑞 , 𝑥2 = ∑ с𝑝𝑞𝑢𝑝𝑣𝑞  ,      𝑥3 = ∑ 𝑑𝑝𝑞𝑢𝑝𝑣𝑞  , 

where 𝑏𝑝𝑞, с𝑝𝑞, 𝑑𝑝𝑞    are constants and integer points (p,q) are in a sector with the angle less than π. 

Type 3 

𝑥1 = ∑ 𝛽𝑘(𝑢)𝑣𝑘 ,   𝑥2 = ∑ 𝛾𝑘(𝑢)𝑣𝑘 , 𝑥3 = ∑ 𝛿𝑘(𝑢)𝑣𝑘,   

∞

𝑘=0

  

∞

𝑘=0

∞

𝑘=0

 

where 𝛽𝑘(𝑢), 𝛾𝑘(𝑢), 𝛿𝑘(𝑢) are rational functions of u and √𝜓(𝑢), and 𝜓(𝑢)  is a polynomial in u. 

Objects and algorithms of Power Geometry. 

Let a finite sum be given (for example, a polynomial)  

𝑓(𝑿) = ∑ 𝑓𝑄𝑿𝑄   𝑜𝑣𝑒𝑟  𝑄 𝜖 𝑆,                (4.1) 

where 𝑿 = (𝑥1, 𝑥2, 𝑥3) 𝜖 ℝ3, 𝑄 =  (𝑞1, 𝑞2, 𝑞3) 𝜖 ℝ3   𝑎𝑛𝑑 𝑿𝑄 = 𝑥1
𝑞1𝑥2

𝑞2𝑥3
𝑞3 ,    𝑓𝑄 = 𝑐𝑜𝑛𝑠𝑡  𝜖  ℝ . 

To each of the summand of f the sum (4.1), we assign it vector power exponent Q, and to the 

whole sum (4.1), we assign the set of all vector power exponents of its terms, which is called the 

support of the sum (4.1) or of the polynomial f(X), and it is denoted by S(f). The convex hull of the 

support S(f) is called the Newton polyhedron of the sum f(X) and it is denoted by Γ(f). 

The boundary ∂Γ of the polyhedron Γ(f) consists of generalized faces Г𝑗
(𝑑) of various 

dimensions d = 0, 1, 2. Here j is the number of a face. To each generalized face Г𝑗
(𝑑)

, we assign the 

truncated sum 𝑓𝑗
(𝑑)(𝑿) = ∑ 𝑓𝑄𝑿𝑄  𝑜𝑣𝑒𝑟 𝑄 𝜖 Г𝑗

(𝑑)
∩ 𝑆(𝑓). 

Example 1. We consider the polynomial 𝒇(𝒙, 𝒚) = 𝒙𝟓 + 𝒚𝟓 − 𝒙𝒚𝟐. Support S(f) consists 

from points Q1=(5,0), Q2=(0,5), Q3=(1,2). 

The Newton polygon Γ(f) is the triangle Q1 Q2 Q3 (figure 1). Edges and corresponding 

truncated polynomials are 

Г1
(1)

 ∶   𝑓1
(1)

= 𝑥5 − 𝑥𝑦2,            Г2
(1)

 ∶   𝑓2
(1)

= 𝑦5 − 𝑥𝑦2,          Г3
(1)

 ∶   𝑓3
(1)

= 𝑥5 + 𝑦5  , 

Let ℝ∗
3

 be a space dual to space ℝ3 and 𝑆 = (𝑠1, 𝑠2, 𝑠3) be points of this dual space. The scalar 

product 
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〈𝑄, 𝑆〉 = 𝑞1𝑠1 + 𝑞2𝑠2 + 𝑞3𝑠3                                                   (4.2) 

is defined for the points 𝑄 𝜖 ℝ3  and 𝑆 𝜖 ℝ∗
3. Specifically, the normal external Nk to the generalized 

face Г𝑘
(𝑑)

 is a point in ℝ∗
3. 

The scalar product 〈𝑄, 𝑁𝑘〉 reaches the maximum value at the points 𝑄 𝜖 Г𝑘
(𝑑)

∩ 𝑆 , i.e., at the 

points of the generalized face Г𝑘
(𝑑)

. Moreover, set of all points  𝑆 𝜖 ℝ∗
3, at which the scalar product 

(4.2) reaches the maximum over 𝑄 𝜖 𝑺(𝑓) exactly at points 𝑄 𝜖 Г𝑘
(𝑑)

 , is called the normal cone of the 

generalized face Г𝑘
(𝑑) and is denoted by 𝑼𝑘

(𝑑)
. 

Example 2: (cont. of Example 1). For faces Г𝑘
(𝑑) of the Newton polygon Γ(f) of Figure 1, 

normal cones are shown in Figure 2. 

For edge Г𝑗
(1)

  j = 1,2,3 normal cone 𝑈𝑗
(1) is a ray orthogonal to its edge. For vertex  Г𝑗

(0)
= 𝑄𝑗 =

𝑅𝑗, j = 1,2,3 normal cone is open sector between rays orthogonal to edges Г𝑗
(1)

 adjacent to vertex Rj. 

Theorem 1. If  for 𝑡 → ∞  the curve 

        𝑥1 = 𝑏𝑡𝑠1(1 + (0)),  𝑥2 = 𝑐𝑡𝑠2(1 + (0)), 𝑥3 = 𝑑𝑡𝑠3(1 + (0))                       (4.3) 

where b, c, d and si  are constants, belongs to the set Ω, and the vector S = (s1, s2, s3)ϵ 𝐔k
(d)

, then the 

first approximation x1 = bts1,  x2 = cts2,  x3 = dts3 of the curve (4.3) satisfies the truncated equation 

f̂k
(d)

(𝐗) = 0. 

See the proof of the theorem in the paper [2, 3]. 

  

Fig. 1 Fig. 2 

The truncated sum 𝑓𝑗
(0)

 corresponding to the vertex Г𝑗
(0)

 is a monomial. Such truncations are 

of no interest and will not be considered. We will consider truncated sums corresponding to edges Г𝑗
(1)

 

and faces Г𝑗
(2)

 only. 

Power transformations have the form 

 log 𝑿 = 𝜶 log 𝒀 ,                                                            (4.4) 

where log 𝑿 = (log 𝑥1 , log 𝑥2 , log 𝑥3)𝑇, log 𝒀 = (log 𝑦1 , log 𝑦2 , log 𝑦3)𝑇 ,   α is a nondegenerate  

square 3 × 3 matrix (𝛼𝑖𝑗) with rational elements 𝛼𝑖𝑗 (they are often integer). 

The monomial 𝑿𝑄  is transformed to the monomial 𝒀𝑄1  by the power transformation (4.4), 

where 𝑄1
𝑇 = 𝜶𝑇𝑄𝑇. Power transformations and multiplications of a polynomial by monomial generate 

the affine geometry in space ℝ3 of vector power exponents of polynomial monomials. The matrix α 

with integer elements and det 𝜶 = ±1 is called unimodular. 

Theorem 2. For the face Г𝑗
(𝑑)

, there exists a power transformation (4.4) with a unimodular matrix 

α which transforms the truncated sum 𝑓𝑗
(𝑑)

(𝑿) into the sum in d coordinates, i.e. 𝑓𝑗
(𝑑)(𝑿) = 𝑌𝑄′

ℎ(𝒀), 

where ℎ(𝒀) = ℎ(𝑦1) if d = 0, ℎ(𝒀) = ℎ(𝑦2𝑦3) if d = 2. Here  𝑄′ = 𝑞1
′ , 𝑞2

′ , 𝑞3
′ 𝜖 ℝ3  and other coordinates 

𝑦2,𝑦3  for d = 1, for d = 2 are small. For the polynomial 𝑓𝑗
(𝑑)

(𝑿) the sum h(Y) is also polynomial. 

The proof of this theorem is similar to the proof of theorem 3 in the paper [2]. 

The cone of the problem K is a set of such vectors 𝑆 = (𝑠1, 𝑠2, 𝑠3)𝜖ℝ∗
3 that curves of the form 

(4.3) fill the part of the space (𝑥1, 𝑥2, 𝑥3), which must be studied. So, our initial problem corresponds 



WORLD SCIENCE                                                                                                                          ISSN 2413-1032 

 

24 № 6(58), Vol.1, June 2020                                                                                                            RS Global 

 

to the cone of the problem 𝐾 = {𝑆 = (𝑠1, 𝑠2, 𝑠3): 𝑆 < 0} in ℝ∗
3, because 𝑥1, 𝑥2, 𝑥3 → 0. If 𝑥1 → ∞ then 

𝑠1 > 0 in the cone of the problem K. 

Example 3. For variables x, y near origin x = y = 0 cone of the problem is the quadrant III: 

{𝑲𝟑 = 𝑠1𝒔𝟐 > 0}. In Figure 2 some cones of the problem Ki intersects several normal cones 𝑼𝒋
(𝟐)

. E.g. 

K3 intersects 𝑼𝟏
(𝟏)

, 𝑼𝟐
(𝟏)

 and 𝑼𝟏
(𝟎)

, 𝑼𝟐
(𝟎)

, 𝑼𝟑
(𝟎)

. K1 intersects 𝑼𝟑
(𝟏)

, 𝑼𝟏
(𝟎)

, 𝑼𝟐
(𝟎)

. 

Let’s give a step-by-step algorithm for solving the problem. 

1. We compute the support S(f), the Newton polyhedron Γ(f), its two-dimensional faces 

Г𝑗
(2)

and their external normal Nj. Using normal Nj we compute the normal cones 𝑈𝑘
1  to edges Г𝑘

(1)
. 

2. We select all the edges Г𝑘
(1)

 and faces Г𝑗
(2)

, which normal cones intersect the cone of the 

problem K. It is enough to select all the faces Г𝑗
(2)

, which external normal Nj intersect the cone of the 

problem K, and then add all the edges Г𝑘
(1)

  of these faces 

a) For each of the selected edge  Г𝑘
(1)

, we fulfill a power transformation X → Y of Theorem 2 

and we get the truncated equation in a form  ℎ(𝑦1) = 0. 

b) We find its roots. Let 𝑦1
0 be one of its roots. 

c) We fulfill the power transformation X → Y in the whole polynomial f (X) and we get the 

polynomial 𝑓1(𝒀). 

d) We make the shift 𝑧1 = 𝑦1 − 𝑦1
0,   𝑧2 = 𝑦2,   𝑧3 = 𝑦3 in the polynomial 𝑓1(𝒀) and get the 

polynomial 𝑓2(𝒁). 

3. If 𝑦1
0  is a simple root of the equation ℎ(𝑦1) = 𝟎  then, according to Implicit Function 

Theorem, it corresponds to an expansion of the form 𝒚𝟐 = ∑ 𝒂𝒑𝒒𝒚𝟏
𝒑

𝒚𝟑
𝒒
  where  𝒂𝒑𝒒 are constants. It 

gives an expansion of type 2 in coordinates Y. 

4. For each of the selected face Г𝒌
(𝟏)

, we fulfill a power transformation X → Y of Theorem 2 

and we get a truncated equation in the form �̂�(𝒚𝟏, 𝒚𝟐) = 𝟎. We factorize �̂�(𝒚𝟏, 𝒚𝟐) = 𝟎 into prime 

factors. Let ℎ̃(𝑦1, 𝑦2) = 0  be one of such factors and its algebraic curve has genus ρ. 

5. If ρ = 0 then there exists birational uniformization 𝑦1 = 𝜉(𝑧2),  𝑦2 = 𝜂(𝑧2) of this curve. 

We change variables 𝑦1 = 𝜉(𝑧2) + 𝑧1, 𝑦2 = 𝜂(𝑧2) and then h is divided by z1. We change variables in 

the whole polynomial f (X) and get the polynomial  𝑓2(𝑍) ≝ 𝑓1(𝑌) = 𝑓 (𝑋) 

If ℎ̃(𝑦1, 𝑦2) is a simple factor of ℎ(𝑦1, 𝑦2) then roots of the polynomial 𝑓2(𝑍) are expanded 

into series of the form 

𝑧1 = ∑ 𝑎𝑘(𝑧2)𝑧3
𝑘∞

𝑘=1           (4.5) 

where 𝑎𝑘(𝑧2) are rational functions of  𝑧2. It gives an expansion of type 3 in original coordinates X. 

If ℎ̃(𝑦1, 𝑦2) is a multiple factor of ℎ(𝑦1, 𝑦2) then we compute the Newton polyhedron of the 

polynomial 𝑓2(𝑍), compute the cone of problem 𝑲2 = {𝑆: 𝑠2, 𝑠3 < 0} and continue computations. 

6. If ρ = 1 (elliptic curve), there exists the birational change of variables 𝑦1, 𝑦2 → 𝑧1, 𝑧2, 

transforming ℎ̃(𝑦1, 𝑦2) = 0 into the normal form 𝑧1
2 − 𝜓(𝑦2), where ψ is a polynomial of order 3 or 4. 

If ρ > 1, we distinguish hyper-elliptic and non hyper-elliptic curves. The hyper-elliptic curve 

is birationally equivalent 𝑦1, 𝑦2 → 𝑧1, 𝑧2 to its normal form 𝑧1
2 − 𝜓(𝑦2) , where ψ is a polynomial of 

order  2𝜌 + 1 𝑜𝑟 2𝜌 + 2. 

If factor ℎ̃  of  h is simple we get expansions of solutions of equation  𝑓2(𝑍) = 0 into series 

(4.5), where 𝑎𝑘  are rational functions of 𝑧2 and √𝜓(𝑧2). We get the expansion of type 3 in original 

coordinates X. 

If ℎ̃(𝑦1, 𝑦2) is a multiple factor of ℎ(𝑦1, 𝑦2) then we continue computation for 𝑓2(𝒁) as above. 

In this procedure, we distinguish two cases: 

1. Truncated polynomial contains a linear part of one of the variables. The generalization of 

the Implicit Function Theorem is applicable and it is possible to compute parametric expansion of a set 

of roots of a full polynomial. 

2. Truncated polynomial does not contain a linear part of any variable. Then the Newton 

polyhedron for a full polynomial must be built and we must consider new truncated polynomials 

taking into account the new cone of the problem K. 
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Example 4 (cont. of Examples 1-3). 

1. For edge Г1
(1)

, we get a truncated equation 𝑥5 − 𝑥𝑦2 = 0 𝑖. 𝑒. 𝑦 = ±𝑥2. It is case 1, and this 

asymptotic form is continued into power expansion of branch 

𝑦 = ±𝑥2 + ∑ 𝑏𝑘𝑥2𝑘

∞

𝑘=2

 

near the origin x = y = 0 (figure 3). 

2. For edge Г2
(1)

, we get a truncated equation 𝑦5 − 𝑥𝑦2 = 0 𝑖. 𝑒. 𝑦 = ±𝑥1/3. It is case 1, and 

these asymptotic forms are continued into power expansion branches 

𝑦 = ±√𝑥
3

+ ∑ 𝑏𝑘𝑥
𝑘
3

∞

𝑘=2

 

near the origin x = y = 0 (figure 4). 

  

Fig. 3 Fig. 4 

3. For edge Г3
(1)

, we get truncated equation 𝑥3 + 𝑦3 = 0. It has the simple factor 𝑥 + 𝑦 = 0, 

i.e 𝑦 = −𝑥. It is case 1, and the power expansion at infinity is 

𝑦 = −𝑥 + ∑ 𝑏𝑘𝑥−𝑘

∞

𝑘=2

 

 

Fig. 5 

Figure 5 shows a general view of the equation 𝑓(𝑥, 𝑦) = 𝑥5 + 𝑦5 − 𝑥𝑦2. In the neighborhood 

of a singular point. 

Asymptotic description of a subset of singular points of Ω can be obtained by the same 

procedure, but we have to select only singular points in each truncated equation. As a result, we obtain 

expansions of type one. 

So we got the following result: If we perform calculations for 1-4 using this procedure, then at 

each step we find all the roots of the corresponding truncated equations, and find all the curves of the 

roots of the truncated equations with a positive native elliptic or hyperelliptic, we get a local description 

of each component of the set Ω adjacent to the starting point 𝐗0, in the form of expansions of types 1-3. 
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