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ABSTRACT

Background: The global radiologist workforce faces a systemic crisis where imaging volume growth significantly outpaces
specialist capacity, reducing per-image interpretation time from 16.0 to 2.9 seconds. This chronic overload contributes to
burnout rates between 34% and 39% and increases the risk of diagnostic errors when daily productivity is exceeded by
approximately 21%.

Methods: A comprehensive literature review examined peer-reviewed studies published between 2015 and 2025. The
analysis focused on the efficacy and sociotechnical impact of deep learning (DL) models across four critical pathologies:
intracranial hemorrhage (ICH), large vessel occlusion (LVO) stroke, pulmonary embolism (PE), and pneumothorax.
Results: DL models, primarily Convolutional Neural Networks and Vision Transformers, demonstrate high diagnostic
accuracy, with pooled sensitivities and specificities frequently reaching 90%. "Active reprioritization" significantly reduces
report turnaround times, yielding median savings of 12.3 minutes for PE and 20.5 minutes for stroke. For outpatient ICH,
time-to-diagnosis dropped from 512 minutes to 19 minutes. In acute stroke care, Al facilitation resulted in a 30.2-minute
reduction in door-to-treatment times and improved discharge NIHSS scores.

Conclusions: DL triage serves as a vital sociotechnical intervention to preserve patient safety amidst diagnostic overload.
Its primary clinical value resides in workflow orchestration rather than standalone diagnosis. Successful implementation
requires integrated "human-in-the-loop" systems to mitigate automation bias and the cognitive time penalty associated with
false positives.
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1. Introduction

The practice of diagnostic radiology is currently confronting a systemic crisis characterized by a widening
disparity between the exponential growth in medical imaging volume and the limited capacity of the radiological
workforce. Over the past three decades, the demand for cross-sectional imaging has surged; a foundational study
by McDonald et al. (2015) established that while the number of radiologists increased modestly, the total number
of CT and MRI images requiring interpretation increased significantly, driving a substantial rise in relative value
units (RVUs) per professional. This trend has persisted and intensified; recent analyses indicate that the radiologist
workload has now reached a state of chronic overload, with the quantity of procedures outpacing the availability of
specialists (Markoti¢ et al., 2023). This pressure is particularly acute during non-standard hours; Bruls and Kwee
(2020) reported that the on-call workload for radiologists has quadrupled over a 15-year period, driven largely by
the increasing complexity and frequency of emergency CT studies. Furthermore, census data from the National
Health Service (NHS) in England highlights that the imaging support workforce remains insufficient to meet this
escalating diagnostic demand (Nightingale et al., 2024).

The immediate consequence of this volume-capacity mismatch is a severe compression of the time
available for image interpretation. A longitudinal analysis revealed that the average interpretation time
available per image for radiologists plummeted from 16.0 seconds to just 2.9 seconds over a 16-year period
(Peng et al., 2022). Such profound time pressures have contributed to a global prevalence of radiologist burnout
estimated between 34% and 39%, a condition characterized by exhaustion and professional dissatisfaction
(Thakore et al., 2024). Crucially, this state of cognitive saturation poses a direct threat to patient safety.
Retrospective data indicates a significant association between relative work overload and perceptual errors;
specifically, radiologists are more likely to commit diagnostic errors on days when their workload exceeds
their average daily productivity by approximately 21% (Kasalak et al., 2023).

e-ISSN: 2544-9435 2
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In response to these operational and safety challenges, Deep Learning (DL) applications have emerged
as anecessary technological intervention to augment human capability. Rather than serving solely as diagnostic
aids, these tools are increasingly utilized for workflow orchestration and triage. A systematic review by Momin
et al. (2025) demonstrated that DL-driven worklist prioritization significantly improves clinical efficiency,
reducing median report turnaround times by 12.3 minutes for pulmonary embolism and 20.5 minutes for stroke.
However, the successful adoption of these technologies requires moving beyond isolated algorithms toward a
holistic implementation strategy that integrates seamlessly with existing radiological workflows (Kim et al.,
2024). This review examines the efficacy of deep learning models in prioritizing acute radiographic findings,
evaluating their potential to mitigate workforce strain and improve timely access to critical care.

2. Methods and Literature Search Strategy

To evaluate the efficacy of deep learning models in radiographic triage and their sociotechnical impact
on the radiological workforce, a comprehensive literature review was conducted. The search strategy was
designed to identify high-quality evidence at the intersection of medical imaging technology, clinical workflow
optimization, and healthcare workforce management.

2.1. Data Sources and Search Criteria

Primary electronic databases including PubMed/MEDLINE and Google Scholar were queried for peer-
reviewed studies published between January 1, 2015, and November 2025, a timeframe selected to capture the
emergence and maturation of modern Convolutional Neural Networks (CNNs) and Vision Transformers
(ViTs) in medical imaging. Additionally, workforce data from the National Health Service (NHS) and
foundational studies regarding radiologist utilization trends were included to establish the clinical context for
Al implementation.

2.2. Keywords and Taxonomy

The search utilized boolean logic combining three primary domains:

1. Technology: "Deep learning," "Artificial Intelligence," "Convolutional Neural Networks,"
"Computer-Aided Triage," "Automated Detection."

2. Clinical Application: "Radiology," "Intracranial Hemorrhage," "Pulmonary Embolism," "Large
Vessel Occlusion," "Pneumothorax," "Emergency Department."

3. Socio-Technical Impact: "Worklist prioritization," "Turnaround time (TAT)," "Radiologist
burnout," "Cognitive load," "Automation bias"

2.3. Inclusion and Exclusion Criteria

Articles were included if they provided quantitative data on diagnostic accuracy
(Sensitivity/Specificity/AUC) or operational metrics (Time-to-Notification, Report Turnaround Time) in a
clinical or simulated clinical environment. Priority was given to studies reporting "real-world" validation over
purely internal technical pilots. Articles were excluded if they focused solely on model architecture without
addressing clinical workflow integration, or if they predated the widespread adoption of deep learning in
radiology (pre-2015).

2.4. Data Synthesis

Extracted data were synthesized narratively and organized by pathological entities (Intracranial
Hemorrhage, Stroke, Pulmonary Embolism, Pneumothorax). Operational outcomes were categorized into
"Diagnostic Accuracy," "Workflow Efficiency," and "Clinical Outcomes" to facilitate a structured comparison
of algorithmic efficacy across different clinical environments.
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3. Technological Foundations

The efficacy of radiographic triage relies on the synergy between advanced Deep Learning (DL)
architectures and their seamless integration into hospital information systems. This section outlines the core
computational models used for pathology detection and the technical mechanisms enabling automated worklist
reprioritization.

3.1. Deep Learning Architectures: CNNs and Transformers

The majority of FDA-cleared triage algorithms currently utilize Convolutional Neural Networks
(CNNs). CNNs are designed to process pixel data by applying learnable filters (kernels) that slide across the
image to extract local spatial features, such as edges, textures, and shapes (Huang et al., 2020). These
architectures, including variations like ResNet and DenseNet, are highly effective at identifying specific
anomalies within a localized region, such as a pulmonary embolus within a contrast-filled vessel or a fracture
line in bone (Huang et al., 2020; Huhtanen et al., 2022).

More recently, Vision Transformers (ViTs) have emerged as a powerful alternative. Unlike CNNss,
which process images via local receptive fields, ViTs utilize a self-attention mechanism to analyze the entire
image context simultaneously. This capability allows the model to capture long-range dependencies and global
relationships between anatomical structures, which is particularly advantageous for complex tasks such as
differentiating between similar pathologies or analyzing volumetric 3D datasets (Alhasan et al., 2025).

3.2. Worklist Reprioritization and Systems Integration

For a triage algorithm to influence clinical workflow, it must move beyond image analysis to system
orchestration. The technical standard for this process involves the integration of the Al server with the Picture
Archiving and Communication System (PACS) and the Radiology Information System (RIS).

The workflow typically follows a standardized "push" model:

1. Image Routing: Upon image acquisition, a DICOM (Digital Imaging and Communications in
Medicine) router automatically forwards the study to an Al inference server based on protocol tags (e.g., "CT
Head Non-Contrast") (O’Neill et al., 2021).

2. Inference and Alerting: The DL model processes the images. If a target pathology (e.g., Intracranial
Hemorrhage) is detected, the system generates a structured alert.

3. Active Reprioritization: The Al server transmits this result back to the RIS using HL7 (Health Level
Seven) messaging or DICOM Structured Reports (SR). The RIS then utilizes this signal to dynamically update
the radiologists' worklist, physically moving the flagged study to the top of the reading queue and assigning it
a "STAT" or "Critical" priority status (Baltruschat et al., 2020; O’Neill et al., 2021).

This "active reprioritization" is distinct from "passive notification" (such as a separate widget or email),
as it forces the critical case into the radiologist's immediate line of sight without requiring voluntary user
interaction (Savage et al., 2024).

4. Efficacy by Pathology

4.1. Intracranial Hemorrhage (ICH)

Intracranial hemorrhage (ICH) is a time-critical emergency where rapid diagnosis is essential to
optimize patient outcomes. Deep learning (DL) models have been extensively evaluated for their ability to
detect ICH and prioritize these studies within the radiologist's worklist. The efficacy of these tools is generally
measured across three dimensions: diagnostic accuracy, impact on report turnaround time (TAT), and
operational efficiency in diverse clinical settings.

4.1.1 Diagnostic Accuracy and Subtype Performance

Deep learning algorithms have demonstrated high diagnostic performance in detecting ICH on non-
contrast computed tomography (NCCT). A systematic review and meta-analysis of machine learning
algorithms found acceptable performance levels for diagnosing ICH, with DL models frequently utilized for
this purpose (Maghami et al., 2023). In a large-scale meta-analysis, commercial Al systems demonstrated a
pooled sensitivity of 0.899 (95% CI: 0.858-0.940) and a specificity of 0.951 (95% CI: 0.928-0.974) (Alhasan
et al., 2025).

However, performance varies significantly by hemorrhage subtype. In a retrospective assessment of the
Canon AUTOStroke solution, the algorithm achieved high overall accuracy but showed disparate sensitivities
for specific bleed types; it achieved a sensitivity of 98.1% for intraparenchymal hemorrhage (IPH) and 100%
for intraventricular hemorrhage (IVH), but significantly lower sensitivities for subdural (75.0%) and
subarachnoid (81.3%) hemorrhages (Rava et al., 2021). Similarly, Alhasan et al. (2025) noted that while Al
systems excel at detecting IPH (pooled sensitivity 0.948), detecting epidural hemorrhage remains more
challenging (pooled sensitivity 0.845).
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4.1.2 Impact on Workflow Prioritization and Turnaround Time

The primary clinical utility of these algorithms is their ability to reprioritize positive cases to the top of
a reporting queue. Arbabshirani et al. (2018) demonstrated that re-prioritizing "routine" outpatient head CTs
based on Al detection reduced the median time to diagnosis from 512 minutes to 19 minutes (p < 0.0001),
effectively identifying critical pathology in patients who would otherwise have waited hours for a report.

The method of notification is a critical determinant of efficacy. O'Neill et al. (2021) found that "active
reprioritization", where the Al system physically moves the study to the top of the worklist, significantly
reduced the wait time for ICH-positive examinations (12.01 minutes vs. 15.75 minutes at baseline; p < 0.0001).
In contrast, a "passive" notification system (e.g., a widget or flag without reordering) had no significant impact
on examination wait times (O'Neill et al., 2021). This finding is supported by Kim et al. (2025), who observed
that while Al assistance did not significantly improve the diagnostic accuracy of board-certified radiologists,
it drastically improved the median reading order of ICH cases from 7.25 to 1.5 (p < 0.001), thereby increasing
the early diagnosis rate from 50.0% to 100.0%.

However, not all prospective studies have shown a benefit. Savage etal. (2024) reported that in a tertiary
academic medical center with 24-hour attending coverage, the implementation of a commercial Al triage
system did not result in a significant difference in mean report turnaround times for ICH-positive examinations
(147.1 minutes without Al vs. 149.9 minutes with AI; p = 0.11) or improve radiologists' diagnostic accuracy.

4.1.3 Operational Challenges and False Positives

The deployment of Al tools also introduces new operational dynamics regarding false positives (FP). In
a prospective analysis of 2,011 scans, Ginat (2019) found that the Al software flagged 18.5% of cases, with
72.4% of those flags being true positives. The impact of false positives is particularly pronounced in low-
prevalence settings. Del Gaizo et al. (2024) evaluated Al in a national teleradiology program with a low ICH
prevalence of 2.70%. They found that the AI tool had a positive predictive value (PPV) of only 21.1%.
Consequently, examinations falsely flagged as positive took radiologists significantly longer to interpret
(median 8 minutes 7 seconds) compared to true negatives (median 6 minutes 53 seconds), suggesting that
disproving a false Al alert imposes a "time penalty" on the radiologist (Del Gaizo et al., 2024).

Furthermore, the seamless integration of these tools is essential for viability. Villringer et al. (2024)
demonstrated that a cloud-based Al solution could process and return results with a median turnaround time
of approximately 9 to 12 minutes, confirming that technical latency is sufficiently low to support acute clinical
workflows. Despite these technical capabilities, the variability in clinical impact underscores that Al efficacy
is highly dependent on the baseline efficiency of the radiology department and the specific prevalence of
disease in the patient population (Savage et al., 2024; Del Gaizo et al., 2024

4.2. Large Vessel Occlusion (LVO) & Ischemic Stroke

The management of acute ischemic stroke, specifically that caused by Large Vessel Occlusion (LVO),
is governed by the principle that "time is brain." Deep learning (DL) algorithms have emerged as critical tools
for automating the detection of LVOs on Computed Tomography Angiography (CTA) and, increasingly, Non-
Contrast CT (NCCT), serving to streamline communication within complex hospital networks.

4.2.1. Diagnostic Accuracy

Commercial DL algorithms have demonstrated robust diagnostic performance, functioning effectively
as screening tools to expedite radiologist review. A 2025 systematic review and meta-analysis comparing two
leading software platforms found that Viz.ai achieved a pooled sensitivity of 84% (95% CI: 81-87%) and
specificity of 95% (95% CI: 95-96%), while RAPID software demonstrated a sensitivity of 88% (95% CI: 85—
90%) and specificity of 84% (95% CI: 82—85%) (Sarhan et al., 2025). Earlier single-center validation studies
corroborated this high performance; Amukotuwa et al. (2019) reported that an automated LVO-detection tool
achieved a sensitivity of 94% and a negative predictive value of 98% with a median processing time of only
158 seconds.

Recent advancements have expanded these capabilities to NCCT, allowing for earlier triage before
advanced angiography is performed. A study utilizing a DL-based software (Heuron ELVO) on NCCT scans
demonstrated a sensitivity of 86% and specificity of 97% for detecting LVOs, suggesting that Al can facilitate
rapid decision-making even in resource-limited settings where CTA may not be immediately interpreted (Lim
et al., 2025). Furthermore, DL applications are evolving beyond simple detection to include the quantification
of infarct volume and the automated calculation of the Alberta Stroke Program Early CT Score (ASPECTS),
further aiding in patient selection for endovascular therapy (Soun et al., 2020).
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4.2.2. Workflow Optimization and Transfer Metrics

The most significant impact of Al in stroke care is observed in "Hub-and-Spoke" networks, where
patients presenting at peripheral centers (spokes) must be rapidly transferred to comprehensive stroke centers
(hubs) for thrombectomy. Al algorithms facilitate "parallel workflows" by triggering automated alerts to the
entire stroke team simultaneously.

Reduction in Notification and Transfer Times:

In a retrospective cohort study, Matsoukas et al. (2023) demonstrated that AI implementation
significantly decreased the time from CTA acquisition at the peripheral hospital to interventional
neuroradiology team notification from a median of 58 minutes to 12 minutes (p <.001). Consequently, the total
time from arrival at the peripheral hospital to arrival at the central hub was reduced by approximately one hour
(145 minutes vs. 207 minutes; p <.001) (Matsoukas et al., 2023). Similarly, Hassan et al. (2020) found that the
utilization of Al software reduced the median transfer time (CTA at primary center to arrival at comprehensive
center) by 66 minutes (p =.0163).

Systematic Efficiency:

A meta-analysis of Al impact on stroke management confirmed these findings on a broader scale,
reporting significant reductions in "Door-to-Intervention Notification" time (Odds Ratio [OR] 0.30) and
"Door-to-Arterial Puncture" time (OR 0.50) (Zebrowitz et al., 2024).

4.2.3. Clinical Outcomes and Resource Utilization

The acceleration of triage and transfer processes has translated into measurable improvements in patient
outcomes and resource utilization. Lim et al. (2025) observed that the implementation of Al triage was
associated with a significant reduction in the National Institutes of Health Stroke Scale (NIHSS) score at
discharge (mean reduction of 4.3 points) compared to the pre-Al period. Furthermore, faster processing times
have economic implications; Hassan et al. (2020) reported that Al implementation correlated with a significant
reduction in the length of stay in the neurological intensive care unit (2.9 days vs. 6.4 days; p =.0039).
Collectively, these data suggest that DL algorithms do not merely augment diagnostic accuracy but
fundamentally restructure the logistical delivery of acute stroke care (Shlobin et al., 2022).

4.3. Pulmonary Embolism (PE)

Pulmonary embolism (PE) is a high-acuity condition where clinical outcomes are closely linked to the
speed of diagnosis and initiation of anticoagulation (Shapiro et al., 2024). Deep learning (DL) models have
been developed to automate PE detection on computed tomography pulmonary angiography (CTPA) and
incidental contrast-enhanced CT scans, aiming to mitigate the risks associated with diagnostic delays and
perceptual errors.

4.3.1. Diagnostic Performance and Accuracy

Deep learning algorithms demonstrate robust diagnostic accuracy for PE detection across varied
technical architectures. Huhtanen et al. (2022) developed a DL model utilizing an InceptionResNet V2
architecture that achieved a stack-based sensitivity of 86.6% and a specificity of 93.5%. Similarly, the scalable
3D convolutional neural network PENet achieved an Area Under the Curve (AUC) of 0.84 on external
validation sets, demonstrating strong generalizability (Huang et al., 2020). Performance typically remains
highest for central and lobar emboli, while sensitivity may decrease for smaller, subsegmental clots located in
the peripheral vasculature (Abed et al., 2025).

4.3.2. Impact on Worklist Triage and Turnaround Time (TAT)

The clinical value of PE triage Al is primarily assessed through its impact on the time interval between
scan completion and radiologist reporting.

Reported Time Savings:

Multiple studies indicate that active worklist reprioritization - physically moving positive cases to the top of
the reporting queue, yields significant operational gains. Batra et al. (2023) observed that Al integration reduced the
mean report turnaround time (TAT) for PE-positive examinations by 12.3 minutes (from 59.9 minutes to 47.6
minutes; p <.05). On a larger scale, an analysis of over 11,000 CTPA exams reported real-world time-savings of
22.2 minutes during standard work hours when Al triage was utilized (Thompson et al., 2025).

Neutral Workflow Findings:

In contrast, some implementations have failed to show a significant operational impact. Schmuelling et
al. (2021) found that nine months after the technical implementation of an Al triage tool, there were no
statistically significant changes in report communication times or patient turnaround in the emergency
department. These findings suggest that technical accuracy is a prerequisite, but the ultimate efficiency of Al
is modulated by existing hospital standard operating procedures and the baseline efficiency of the human
reporting team (Schmuelling et al., 2021).
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4.3.3. Detection of Incidental Pulmonary Embolism (iPE)

A critical "safety net" application of DL is the detection of incidental PE (iPE) on scans performed for
non-vascular indications, such as oncologic staging or cardiac assessment. In oncology populations, where iPE
prevalence is high but frequently overlooked by human readers, Al has demonstrated the ability to reduce the
radiologist miss rate from 44.8% to 2.6% (Topff et al., 2023). This intervention shortened the median time to
detection and notification from several days to just 87 minutes (Topff et al., 2023). High diagnostic accuracy
has also been reported for iPE in oncology cohorts, with sensitivities reaching 97.3% (Ammari et al., 2024).
Furthermore, the application of DL to cardiac CT angiography (CCTA) scans has proven feasible, identifying
incidental emboli in approximately 1% of scans that might otherwise go undetected due to the limited field of
view and focus on coronary anatomy (Brin et al., 2025).

4.3.4. Sociotechnical Challenges: False Positives and Acceptance

The operational utility of PE Al is occasionally hindered by false positives (FP), which typically arise
from flow artifacts, respiratory motion, or enlarged lymph nodes misinterpreted as vascular occlusions (Abed
et al., 2025). Despite these technical pitfalls, radiologist acceptance of these tools is generally high, as they are
perceived as valuable adjuncts for improving diagnostic confidence and safety during high-volume shifts
(Abed et al., 2025). Shapiro et al. (2024) further highlighted that the integration of Al-triggered alerts into
mobile communication platforms can facilitate the rapid activation of Pulmonary Embolism Response Teams
(PERT), potentially translating algorithmic detection into faster bedside clinical interventions.

4.4. Pneumothorax

Pneumothorax is a critical clinical condition characterized by the presence of air in the pleural space,
which can lead to lung collapse and life-threatening tension physiology if not promptly identified (Hillis et al.,
2022). Deep learning (DL) models have been developed to automate the detection of pneumothorax on chest
radiographs (CXRs) and prioritize these critical findings to reduce reporting delays in emergency and acute
care settings.

4.4.1. Diagnostic Accuracy and Performance

DL algorithms demonstrate high diagnostic proficiency for pneumothorax detection, often achieving
performance levels comparable to experienced clinicians. A systematic review and meta-analysis found that
Al models achieved a pooled sensitivity of 87% and specificity of 93% for pneumothorax on CXRs
(Sugibayashi et al., 2023). In a large-scale evaluation of 1,000 radiographs, an Al model demonstrated an Area
Under the Curve (AUC) of 0.978 for detecting any pneumothorax and 0.987 specifically for tension
pneumothorax (Hillis et al., 2022). Furthermore, specialized models have achieved accuracies as high as
98.34% in controlled datasets (Dal & Kaya, 2025).

The performance of these models remains robust across varying clinical conditions. In a study
comparing Al against human readers, the Al model achieved a sensitivity of 76.5%, significantly higher than
the 56.4% achieved by junior clinicians working unaided (Novak et al., 2024). However, model performance
can be influenced by the type of training labels and clinical settings. For instance, Mosquera et al. (2021) noted
that while detection is generally reliable, some architectures may produce false positives due to subpleural
bullae or technical artifacts such as patient rotation.

4.4.2. Impact on Workflow and Turnaround Time (TAT)

The operational value of Al for pneumothorax lies in its ability to reorder the diagnostic queue, moving
critical "perceptual misses" to the top of the worklist.

Reduction in Reporting Delays:

In a clinical simulation using over 470,000 radiographs, the implementation of Al-based triaging
reduced the mean reporting delay for critical findings, including pneumothorax, from 11.2 days to 2.7 days
(Annarumma et al., 2019). Similarly, Baltruschat et al. (2020) demonstrated that smart worklist prioritization
could reduce the mean report turnaround time (RTAT) for urgent cases by approximately 16%, minimizing
the risk of "hidden" critical findings languishing in high-volume queues.

Support for Junior Clinicians:

Al acts as a vital "safety net" for less experienced readers. The use of Al-assisted image interpretation
was found to improve the sensitivity of junior clinicians in identifying pneumothoraces from 56.4% to 77.9%
(Novak et al., 2024). This diagnostic augmentation is particularly beneficial in emergency departments where
non-radiologists may be the first to interpret imaging (Ho et al., 2025).
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4.4.3. Localization and Visualization

To facilitate human verification, many triage tools provide visual aids such as heatmaps or bounding
boxes. High-resolution networks have demonstrated improved localization capabilities, with some achieving
a mean intersection-over-union (IoU) of 0.825 for segmenting pneumothorax regions (Dal & Kaya, 2025).
However, clinicians must remain vigilant, as some algorithms, such as CheXNet, have shown lower
localization accuracy despite high classification scores, occasionally flagging incorrect regions of the lung
(Mosquera et al., 2021).

4.4.4. Comparative Efficacy and Implementation

While many commercial Al tools are available, their standalone performance varies. A study comparing
four commercially available Al tools for pneumothorax detection found sensitivities ranging from 75% to 88%
and specificities from 85% to 95% in an emergency department cohort (Plesner et al., 2023). These results
underscore that while Al is a reliable tool for reducing diagnostic imaging delays for time-sensitive chest
diseases, its effectiveness is optimized when used as a triage tool to prioritize studies for expert radiologist
review (Kolossvary et al., 2023).

5. Impact on Workflow & Society

The deployment of deep learning (DL) models for radiographic triage extends beyond diagnostic
accuracy, fundamentally altering the operational efficiency of healthcare systems and the cognitive patterns of
clinical practitioners. This section evaluates the quantitative impact on report delivery, the clinical implications
for hyper-acute care, and the sociotechnical risks associated with human-Al interaction.

5.1. Reduction in Turnaround Time (TAT)

The primary metric of success for triage algorithms is the reduction of Report Turnaround Time (TAT),
defined as the interval between the completion of image acquisition and the finalization of the radiologist’s
report. Meta-analytic data indicate that DL-driven worklist prioritization significantly alleviates reporting
delays. Momin et al. (2025) reported median TAT reductions of 12.3 minutes for pulmonary embolism (PE)
and 20.5 minutes for stroke across diverse clinical settings.

The magnitude of these savings is often contingent upon the patient's initial priority status. Arbabshirani
et al. (2018) demonstrated that for outpatient intracranial hemorrhage (ICH) cases, which are traditionally
queued as "routine", Al intervention reduced the median time to diagnosis from 512 minutes to 19 minutes.
Similarly, for chest radiographs, Al-based triaging has been shown to reduce mean reporting delays for critical
findings from 11.2 days to 2.7 days (Annarumma et al., 2019). However, these gains are not universal; in
environments where human reporting is already highly optimized (e.g., 24/7 academic attending coverage),
the introduction of Al triage may yield no significant difference in TAT (Savage et al., 2024).

5.2. Impact on the "Golden Hour" of Patient Care

In hyper-acute conditions such as large vessel occlusion (LVO) stroke and tension pneumothorax, the
"Golden Hour" refers to the critical window where immediate intervention can prevent irreversible tissue loss
or death. DL models act as "force multipliers" in these scenarios by enabling parallel processing.

In stroke care, Al platforms facilitate a "Door-to-Needle" and "Door-to-Puncture" compression by
alerting interventional teams before a formal radiologist report is even initiated. Implementation of these tools
has been associated with a 30.2-minute reduction in "Door-to-Endovascular Thrombectomy" (EVT) times
(Lim et al., 2025). Furthermore, in "hub-and-spoke" networks, Al-driven synchronization has halved the time
required for transfer activation, reducing the delay from 64 minutes to 32 minutes (Matsoukas et al., 2023).
This clinical acceleration translates into measurable patient benefits, including a mean reduction of 4.3 points
in National Institutes of Health Stroke Scale (NIHSS) scores at discharge (Lim et al., 2025). Similarly, in PE
management, Al-triggered mobile alerts allow for the rapid mobilization of Pulmonary Embolism Response
Teams (PERT), ensuring that high-risk patients receive anticoagulation or intervention within shorter clinical
windows (Shapiro et al., 2024).
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5.3. Automation Bias: Do Radiologists Become Complacent?

The integration of Al into clinical practice introduces the risk of "automation bias," a sociotechnical
phenomenon where clinicians may over-rely on algorithmic outputs, leading to a potential decline in
independent human vigilance.

Human-AI Symbiosis vs. Over-reliance:

Research indicates that while Al serves as an effective "safety net" for junior clinicians, improving their
sensitivity for pneumothorax from 56.4% to 77.9%, there is a risk that users may become "blind" to findings
the Al fails to flag (Novak et al., 2024). This is particularly critical given that Al sensitivity is often lower for
distal or subtle pathologies, such as subsegmental PE or small subdural hematomas (Abed et al., 2025; Alhasan
et al., 2025).

The "Penalty of Disconfirmation":

Complacency is further challenged by the cognitive burden of false positives. Del Gaizo et al. (2024)
observed that in low-prevalence settings, radiologists spend significantly more time interpreting scans falsely
flagged by Al (8 minutes 7 seconds) than true negative scans (6 minutes 53 seconds). This "time penalty"
required to disprove an Al error suggests that rather than becoming complacent, radiologists may face
increased cognitive fatigue as they navigate high-volume alerts. To mitigate these risks, researchers advocate
for "human-in-the-loop" systems where Al-generated heatmaps and explainable confidence scores are used to
guide, rather than replace, human interpretation (Wu et al., 2024; Kim et al., 2024)

6. Discussion

The synthesis of recent literature reveals a complex landscape where the theoretical efficacy of deep
learning (DL) models often diverges from their operational reality. While DL algorithms demonstrate high
standalone diagnostic performance, with sensitivities for intracranial hemorrhage (ICH) and large vessel
occlusion (LVO) frequently exceeding 90% (Alhasan et al., 2025; Sarhan et al., 2025), their ability to translate
this potential into tangible workflow improvements is not guaranteed.

6.1. The "Implementation Gap" between Accuracy and Efficiency

A recurring theme across pathologies is the discrepancy between algorithmic accuracy and clinical time
savings. In high-volume or resource-constrained environments, the impact of Al is profound; for example,
Arbabshirani et al. (2018) reported a reduction in time-to-diagnosis for outpatient [CH from 512 minutes to 19
minutes. Similarly, in "hub-and-spoke" stroke networks, Al-driven synchronization reduced transfer times by
over an hour (Matsoukas et al., 2023). However, in optimized tertiary centers with 24/7 attending coverage,
the addition of Al triage has shown negligible improvements in turnaround times (Savage et al., 2024). This
suggests that Al triage yields diminishing returns in systems where human efficiency is already maximized,
acting most effectively as a "force multiplier" in settings plagued by backlog or staffing shortages (Schmuelling
etal., 2021).

6.2. The Influence of Disease Prevalence on Workflow

The operational utility of triage tools is heavily modulated by the prevalence of the target condition. In
low-prevalence settings, the "penalty of disconfirmation" becomes a significant burden. Del Gaizo et al. (2024)
demonstrated that in a population with only 2.7% ICH prevalence, the time required for radiologists to verify
and dismiss false positive alerts (median 8 minutes 7 seconds) exceeded the time to read true negatives. This
finding highlights a critical sociotechnical challenge: as disease prevalence drops, the positive predictive value
(PPV) of the algorithm declines, potentially increasing the cognitive load on radiologists rather than alleviating
it (Del Gaizo et al., 2024).

6.3. Integration Modalities: Active vs. Passive Triage

The mechanism of alert delivery is a decisive factor in system efficacy. "Active reprioritization", where
positive cases are physically moved to the top of the worklist, has consistently proven superior to "passive"
notifications (e.g., flags or widgets). O’Neill et al. (2021) found that while passive alerts had no significant
impact, active reordering significantly reduced wait times for critical ICH studies (p <.0001). This validates
the hypothesis that for Al to effectively function as a triage tool, it must be integrated directly into the
Radiology Information System (RIS) workflow rather than existing as a parallel notification stream requiring
voluntary clinician engagement (Momin et al., 2025).
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6.4. The Human-AlI "Safety Net"

Despite the risks of automation bias, the role of Al as a diagnostic safety net remains robust, particularly
for less experienced clinicians. Novak et al. (2024) observed that Al assistance improved the sensitivity of
junior clinicians for detecting pneumothorax from 56.4% to 77.9%. Similarly, in oncology workflows, Al
triage reduced the miss rate for incidental pulmonary emboli from 44.8% to 2.6% (Topff et al., 2023). These
findings support a "human-in-the-loop" model where Al serves not to replace radiologist judgment, but to
augment vigilance against perceptual errors driven by fatigue and volume overload (Kasalak et al., 2023; Wu
etal., 2024)

7. Conclusions

The integration of deep learning (DL) models into radiographic triage marks a definitive shift in
addressing the systemic crisis within diagnostic radiology. As imaging demand continues to outpace workforce
capacity, resulting in interpretation times as low as 2.9 seconds per image and significantly increased error
rates during periods of work overload (Peng et al., 2022; Kasalak et al., 2023), these technologies provide a
vital mechanism for clinical prioritization.

Evidence across multiple pathologies, including intracranial hemorrhage, large vessel occlusion stroke,
pulmonary embolism, and pneumothorax, demonstrates that DL algorithms achieve high diagnostic accuracy,
often reaching pooled sensitivities and specificities near 90% (Alhasan et al., 2025; Sarhan et al., 2025;
Sugibayashi et al., 2023). However, the primary clinical value of these tools is not derived from standalone
diagnosis but from their operational role as workflow orchestrators. When implemented through "active
reprioritization," these systems successfully compress the "Golden Hour" of care, reducing report turnaround
times by significant margins and facilitating faster transfers in "hub-and-spoke" networks (Matsoukas et al.,
2023; Batra et al., 2023). In stroke care specifically, this acceleration has been linked to measurable
improvements in patient outcomes, such as reduced NIHSS scores at discharge (Lim et al., 2025).

Despite these advancements, the efficacy of DL triage is not universal and is heavily dependent on the
clinical environment. In low-prevalence settings, the "penalty of disconfirmation" associated with false
positives can impose an additional cognitive and temporal burden on radiologists (Del Gaizo et al., 2024).
Furthermore, the risk of automation bias necessitates a "human-in-the-loop" approach where Al serves as a
"safety net" to augment, rather than replace, clinical vigilance (Novak et al., 2024; Wu et al., 2024). Ultimately,
deep learning triage functions as a critical sociotechnical intervention that ensures life-threatening findings are
prioritized, thereby mitigating the safety risks inherent in the current era of chronic diagnostic overload.
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