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ABSTRACT

Background: Artificial intelligence (Al) is increasingly integrated into mental health care, offering tools for assessment,
monitoring, risk prediction, and intervention. Rising global mental health needs, clinician shortages, and advances in digital
technologies have accelerated adoption of conversational agents, digital phenotyping, clinical decision-support systems, and
large language models (LLMs). Despite substantial promise, concerns remain regarding bias, transparency, safety, and real-
world effectiveness.

Methods: This narrative review synthesized peer-reviewed studies published between 2017 and early 2025. Searches were
conducted in PubMed, PsycINFO, Scopus, and Google Scholar. Eligible sources included randomized controlled trials,
systematic reviews, meta-analyses, observational studies, and major policy documents evaluating Al for mental health
diagnosis, monitoring, intervention, or clinical decision support.

Results: Findings across more than 120 studies show that Al-based conversational agents provide modest but consistent
improvements in symptoms of mild to moderate depression and anxiety. Diagnostic models and triage tools demonstrate
potential for identifying psychosis risk, suicide risk, and treatment response, but external validity remains limited by dataset
bias and variable performance in real-world settings. Digital phenotyping offers early-warning capabilities for relapse, while
LLMs improve documentation efficiency but struggle with crisis detection and safety-sensitive reasoning. Ethical
concerns—particularly relating to privacy, informed consent, explainability, and algorithmic faimess—remain widespread.
Conclusions: Al has significant potential to enhance mental health care through scalable interventions, improved diagnostic
accuracy, and proactive monitoring. However, safe integration requires robust governance, transparency, and sustained
human oversight. Future progress depends on large-scale clinical trials, bias mitigation, standardized evaluation frameworks,
and the development of equitable hybrid human-AI care models.
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1. Introduction

Mental health disorders represent one of the leading contributors to the global burden of disease, with
depressive and anxiety disorders collectively affecting more than 600 million people worldwide (GBD
Collaborative Network, 2023). Beyond individual suffering, mental illness has profound economic
implications, including reduced productivity, increased healthcare expenditures, and long-term disability
(Patel et al., 2018). The persistent treatment gap—where up to 75% of people with mental health conditions in
low- and middle-income countries receive no care—highlights the urgent need for scalable, evidence-based
solutions (Thornicroft et al., 2017).

Theoretical frameworks such as the stepped-care model and the digital mental health ecosystem model
suggest that technology-enabled interventions can enhance mental health systems by improving early detection,
triage efficiency, and low-intensity intervention delivery (Bower & Gilbody, 2005; Mohr et al., 2017). Artificial
intelligence (AI) extends these frameworks by enabling continuous monitoring, predictive analytics, and adaptive
personalization. Al tools—including machine learning (ML), deep learning, natural language processing (NLP),
and large language models (LLMs)—are increasingly integrated across clinical, community, and population-level
mental health applications. Their rise is facilitated by ubiquitous smartphone adoption, advances in sensor
technology, and growing acceptance of telehealth and digital therapeutics (Torous et al., 2020).

Recent meta-analyses and policy reports emphasize that Al may serve as a transformative catalyst in
mental health care by improving early symptom detection, augmenting clinician decision-making, and
expanding preventive mental health strategies (He et al., 2019; Lawrence et al., 2024; Alhuwaydi et al, 2024).
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Despite this promise, however, concerns persist regarding algorithmic fairness, explainability, data governance,
and real-world effectiveness—particularly in sensitive domains such as suicidality and severe mental illness
(Vokinger et al., 2021; Mennella et al., 2024). These challenges underscore the need for rigorous evaluation,
ethical oversight, and multidisciplinary collaboration.

Global reports highlight that innovation—including digital and Al-enabled tools—is essential for
addressing the treatment gap (Patel et al., 2018). Al technologies—including machine learning (ML), deep
learning, natural language processing (NLP), and large language models (LLMs)—are emerging as promising
tools capable of expanding assessment, intervention, and monitoring capabilities in mental health care, also
showing promise among children and adolescents, who represent a rapidly growing at-risk population
(Fernandez-Batanero et al., 2025). The growth of Al in this field is supported by the proliferation of
smartphones and wearables, improved computational infrastructures, and increasing acceptance of remote and
digital therapeutic solutions (Torous et al., 2020).

Despite rapid advancements, the integration of Al presents ethical, methodological, and regulatory
challenges. Issues such as algorithmic bias, lack of transparency, limited generalizability, and inconsistent
performance in crisis scenarios pose significant obstacles (Char et al., 2020; Mennella et al., 2024). This review
synthesizes current evidence across five core domains: conversational agents, diagnostic tools, risk prediction,
digital phenotyping, and LLMs.

2. Methodology

A narrative review was conducted to synthesize peer-reviewed evidence on artificial intelligence (Al)
in mental health from 2017 to February 2025. Searches were performed in PubMed, PsycINFO, Scopus, and
Google Scholar using combinations of terms including: “artificial intelligence,” “machine learning,” “deep
learning,” “natural language processing,” “large language models,” “digital mental health,” “chatbots,”
“conversational agents,” “digital phenotyping,” “risk prediction,” “suicide,” “diagnosis,” and “clinical
decision support.” Example search strings included ("artificial intelligence" AND "mental health") and
("chatbot" AND "depression").

Inclusion criteria were peer-reviewed empirical studies, systematic reviews, meta-analyses, and major
policy documents examining Al for mental health diagnosis, monitoring, intervention, or risk prediction.
Exclusion criteria were non-English publications, non—peer-reviewed sources, and technical papers without
clinical relevance.

Data from eligible studies were synthesized thematically across five domains: conversational agents,
diagnostic and triage tools, risk-prediction models, digital phenotyping, and large language models.

3.Findings

3.1. Conversational Agents and Digital Therapeutics

New frameworks now offer clear guidance on how to create safe and effective digital mental health tools
(Mertens & Van Gelder, 2024). Conversational agents—such as Woebot, Wysa, and Youper—deliver
psychological support through NLP-driven dialogue. Randomized controlled trials (RCTs) demonstrate
reductions in depressive and anxiety symptoms following engagement with Al-guided cognitive behavioral
therapy and supportive interventions (Fitzpatrick et al., 2017). Empathy-driven conversational platforms
further enhance engagement and satisfaction (Inkster et al., 2018), while systematic reviews show consistent,
albeit modest, treatment effects (Abd-Alrazaq et al., 2020). Early evidence suggests that users may disclose
sensitive information more readily to Al systems than to humans (Miner et al., 2017).

Despite promising outcomes, limitations include reduced effectiveness for severe mental illness,
emotional dissatisfaction due to scripted responses, and safety concerns regarding inadequate crisis detection
(Torous et al., 2020).

3.2. Diagnostic Aids and Triage Tools

ML-based diagnostic systems analyze speech, facial expressions, linguistic coherence, and behavioral
signals to detect psychiatric conditions. Speech and acoustic markers have been successfully correlated with
depression and suicide risk (Cummins et al., 2015). Triage algorithms can assist clinicians by prioritizing high-
risk cases based on historical and clinical data (Walsh et al., 2017). Al-driven predictive models have also
demonstrated utility in early-stage diagnostic prediction for psychotic disorders (Koutsouleris et al., 2021).

However, diagnostic accuracy often declines when tools are tested outside development datasets,
reflecting weak external validity (Kirtley et al., 2022). Algorithmic bias further threatens equitable diagnostic
performance (Char et al., 2020). Many systems remain unregulated, raising concerns about clinical reliability
(Mennella et al., 2024).
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3.3. Risk Prediction: Suicide, Self-Harm, and Relapse

Al-based risk prediction tools attempt to forecast suicide attempts, self-harm, or psychiatric relapse.
Experimental evaluations have shown substantial performance variability among mental health chatbots when
detecting suicidal ideation (Pichowicz et al., 2025). Large datasets have enabled moderate predictive accuracy
in controlled environments (Walsh et al., 2017). Yet systematic reviews show that many risk-prediction
systems fail to outperform simple statistical baselines in real-world practice (Belsher et al., 2019).

False positives risk overwhelming crisis services, while false negatives carry severe safety implications.
Ethical questions include autonomy, consent, and the potential reinforcement of structural biases embedded in
clinical data (Kirtley et al., 2022).

3.4. Digital Phenotyping and Passive Monitoring

Digital phenotyping leverages smartphone and wearable sensors to monitor behavioral changes,
mobility patterns, communication frequency, circadian rhythms, and physiological markers. Such metrics can
predict upcoming depressive or manic episodes (Onnela & Rauch, 2016). Reviews highlight the potential of
digital phenotyping for early relapse detection across mood and psychotic disorders (Maatoug et al., 2022).
However, ethical challenges include privacy, surveillance, unclear consent mechanisms, and proprietary data
governance (Huckvale et al., 2019).

3.5. Large Language Models (LLMs)

LLMs are increasingly used for clinical documentation, note summarization, patient education, chat-
based support, and administrative automation. They reduce clinician burden by streamlining documentation
workflows (Lawrence et al., 2024). However, LLMs pose considerable risks: hallucinations, inconsistent
reasoning, missed crisis cues, and embedded biases (Torous et al., 2020). Clinical use necessitates strong
oversight to ensure accuracy, transparency, and patient safety (Char et al., 2020).

Recent studies further highlight both opportunities and limitations. In 2023 and 2024, large-scale
evaluations demonstrated that LLMs show strong performance in tasks such as clinical summarization and
diagnostic reasoning but struggle significantly with crisis-language detection, differential diagnosis involving
severe mental illness, and generating safety-sensitive recommendations (Nori et al., 2023; Kim et al., 2025).
In mental health—specific tasks, LLMs were shown to provide coherent psychoeducational information but
often failed to maintain therapeutic boundaries or detect nuanced emotional content (Kim et al., 2025). These
issues underscore the need for specialized fine-tuning, guardrails, and human oversight in mental-health
deployments.

3.6. AI-Enabled Clinical Decision Support Systems

Al-powered clinical decision support systems (CDSS) have been increasingly integrated into psychiatric
assessments, pharmacotherapy decisions, and treatment planning. A 2023 review found that CDSS enhanced
clinician accuracy in diagnosing depressive and anxiety disorders and improved treatment adherence when
integrated into electronic health records (Cruz-Gonzalez et al., 2025). Additionally, Al-assisted medication
management tools show promise in predicting antidepressant response and optimizing treatment sequencing
based on genetic, behavioral, and clinical data (Jaworska et al., 2019).

Nevertheless, concerns remain about overreliance, transparency, and workflow disruption. Clinicians
report that poorly designed CDSS tools can increase cognitive load or produce recommendations that conflict
with clinical judgment (Sendak et al., 2020). Integrating CDSS into psychiatric workflows requires careful
design and continuous evaluation to ensure clinical utility.

3.7. Al in Population and Public Mental Health

Recent work has explored how Al can support surveillance of population-level mental health trends,
particularly through analysis of social media, search engine queries, and digital communication patterns.
Studies during and after the COVID-19 pandemic demonstrated that Al systems could detect shifts in collective
anxiety, loneliness, and suicidality by analyzing temporal trends in language and sentiment (Halford et al.,
2020). Public health agencies increasingly use these systems to inform community interventions and
mental-health policy.

However, ethical challenges are substantial. Large-scale monitoring risks privacy violations, lack of informed
consent, and potential misuse of population data. Scholars argue for strict governance frameworks to ensure that
public mental-health Al respects autonomy and avoids harmful surveillance practices (Cheong, 2024).
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4.Discussion

Artificial intelligence is poised to profoundly transform mental health care, offering scalable solutions
to global workforce shortages, diagnostic limitations, and inequities in access. Yet the evidence also highlights
significant limitations that demand caution, governance, and human-centered implementation.

A major strength of Al is its scalability. Conversational agents allow millions to access evidence-based
strategies instantly and anonymously, addressing barriers such as cost, stigma, and clinician scarcity (World
Health Organization, 2023). RCTs demonstrate that these digital therapeutics reduce symptoms for mild to
moderate mental health conditions (Fitzpatrick et al., 2017), and empathic, adaptive agents further enhance
user engagement (Inkster et al., 2018). Systematic reviews confirm consistent, if modest, benefits (Abd-
Alrazaq et al., 2020), emphasizing their potential as early intervention or supplemental tools. Beyond symptom
reduction, Al technologies also show potential for strengthening positive mental health indicators such as
resilience and emotional well-being (Thakkar et al., 2024).

Recent analyses further underscore these strengths highlighting how Al-enabled screening,
psychoeducation, and adaptive interventions may enhance population-level mental wellness by improving
early detection and personalizing preventive strategies. These analyses suggest that Al-driven tools could play
a key role not only in clinical care but also in public mental health initiatives (Alhuwaydi AM, 2024)

Al also enhances precision and early detection. Speech, behavioral, and linguistic analyses identify
patterns indicative of depression, psychosis, and suicidality (Cummins et al., 2015). Digital phenotyping
extends these capabilities, with passive sensing predicting symptom changes before they manifest clinically
(Maatoug et al., 2022). Such early-warning systems could fundamentally reshape relapse prevention.

Furthermore, Al-driven automation can reduce the heavy administrative burden faced by clinicians.
LLMs assist with documentation, treatment summaries, and information retrieval, potentially alleviating
burnout and increasing time for direct patient care (Lawrence et al., 2024). Effective integration of these tools
requires multidisciplinary coordination involving clinicians, technologists, ethicists, and policymakers
(Mohajer-Bastami A, 2025).

However, significant limitations threaten safe adoption. Crisis-response failures remain a central
concern: conversational agents and LLMs often fail to detect suicidal ideation or provide appropriate responses
(Torous et al., 2020). Suicide-prediction algorithms also show limited generalizability, frequently performing
no better than chance in real-world environments (Belsher et al., 2019; Kirtley et al., 2022). Given the high
stakes, unsupervised Al use in crisis scenarios is unsafe.

Algorithmic bias also poses serious challenges. Al systems trained on non-representative datasets may
systematically misclassify symptoms or risks in marginalized populations, external reinforcing existing
disparities rather than mitigating them (Char et al., 2020). Bias can arise from structural inequities embedded
within training datasets, uneven data representation, or flawed model assumptions, leading to unequal clinical
outcomes and reduced trust among vulnerable groups.

Ethical concerns surrounding privacy, consent, and data governance are especially salient for digital
phenotyping. Continuous passive monitoring collects deeply personal behavioral information, often without
users fully understanding how their data will be used, stored, or shared (Huckvale et al., 2019). Without strong
governance frameworks, such technologies risk normalizing surveillance, undermining autonomy, and eroding
public trust.

Explainability and accountability remain substantial obstacles. Many Al systems function as opaque
“black boxes,” making it difficult for clinicians to determine how outputs were generated and to assess their
appropriateness in clinical contexts (Mennella et al., 2024). This lack of transparency complicates shared
decision-making and raises medico-legal challenges regarding responsibility for adverse outcomes.
Multidisciplinary experts emphasize that improving interpretability must be a priority for the next generation
of Al tools (Mohajer-Bastami A et al., 2025).

Finally, there is a risk of overreliance on automation. Blind trust in Al-generated outputs may diminish
clinician judgment, reduce therapeutic engagement, and weaken the patient-provider relationship—elements
foundational to effective mental health care. AI cannot replicate empathy, attunement, or contextual
understanding. Clinicians remain essential for interpreting Al outputs within the broader biopsychosocial
framework, a point strongly emphasized by Singhal et al. (2024), who argue that human oversight is
indispensable for safe and ethical implementation.

Despite promising advancements, several limitations constrain current Al applications in mental health.
Many studies rely on small, non-representative samples, limiting generalizability across cultural and clinical
contexts. Real-world deployment often yields lower accuracy than controlled trials due to data drift,
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heterogeneous environments, and unanticipated user behaviors (Low et al., 2020). Additionally, most Al
systems lack validation and transparent reporting, hindering reproducibility and safe clinical adoption (Kirtley
et al., 2022). Ethical concerns—particularly regarding privacy, surveillance, and informed consent—remain
insufficiently addressed, especially for digital phenotyping and LLM-based tools (Huckvale et al., 2019).
Finally, the absence of unified regulatory pathways poses challenges for monitoring safety, accountability, and
ongoing model updates (Vokinger et al., 2021).

Al stands to significantly augment clinical care, but its integration must be grounded in ethical, equitable,
and evidence-based frameworks. Clinicians require training to appropriately interpret Al outputs, identify
model limitations, and incorporate algorithmic insights into patient-centered care. Health systems must invest
in governance infrastructures that include bias audits, performance monitoring, data-protection mechanisms,
and transparent communication with patients. Policymakers should enact regulations ensuring patient safety,
algorithmic fairness, and responsible data stewardship. Collaboration across clinical, technical, and regulatory
domains is essential to ensure Al systems enhance access and improve outcomes without exacerbating
disparities (Xu et al., 2025; Zhang et al., 2024)

Future research should prioritize large-scale, multisite randomized trials that compare Al-augmented
care with standard practice. Studies must examine long-term outcomes, model stability, and patient
acceptability across diverse populations. There is a pressing need for standardized evaluation metrics, robust
reporting guidelines, and frameworks for continuous model monitoring. Advances in explainable Al (XAI)
could improve clinician trust and facilitate safer integration. Additionally, co-design approaches involving
patients, clinicians, and underserved communities will be critical to developing equitable and context-sensitive
Al systems. To maximize public health benefit, future Al tools should support stepped-care models, enable
earlier intervention, and integrate seamlessly with hybrid human-Al care structures (Vokinger et al., 2021).

Moving forward, hybrid human-Al models that enhance rather than replace clinicians represent the most
responsible and effective path. Rigorous external validation, equity-centered design, transparent reporting, and
adaptive regulatory frameworks are essential to ensure clinical safety and equitable outcomes (Torous et al.,
2020; Vokinger et al., 2021; Mohajer-Bastami et al., 2025)

4. Conclusion

Al holds transformative potential to strengthen mental health systems by enhancing early detection,
improving diagnostic accuracy, and expanding access to evidence-based interventions. Real-world evidence
demonstrates that Al-driven tools can support clinical decision-making, reduce administrative burden, and
offer scalable therapeutic support for individuals with mild to moderate symptoms (Fitzpatrick et al., 2017;
Abd-Alrazaq et al., 2020). Additionally, advances in digital phenotyping and multimodal analytics open new
possibilities for personalized, proactive mental health care by identifying risk trajectories before crises occur
(Onnela & Rauch, 2016; Maatoug et al., 2022).

Yet the responsible integration of Al requires confronting significant ethical, clinical, and technical
challenges. Many models lack external validation, exhibit biases that disproportionately affect marginalized
groups, or perform inconsistently under real-world conditions (Belsher et al., 2019; Kirtley et al., 2022).
Concerns surrounding privacy, consent, explainability, and accountability further complicate implementation,
particularly for continuously learning systems (Vokinger et al., 2021). These limitations emphasize that Al
must not replace human expertise but rather complement it within carefully designed hybrid care models.

Future research should prioritize large-scale randomized trials, longitudinal effectiveness studies, bias
mitigation strategies, and the development of transparent reporting frameworks. Policymakers, clinicians,
engineers, and ethicists must collaborate to establish regulatory pathways that ensure safety, fairness, and
public trust. When supported by strong governance and human oversight, Al can meaningfully enhance mental
health care delivery and contribute to more equitable, accessible, and patient-centered mental health systems.
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