



# International Journal of Innovative Technologies in Social Science

e-ISSN: 2544-9435

Operating Publisher  
SciFormat Publishing Inc.  
ISNI: 0000 0005 1449 8214

2734 17 Avenue SW,  
Calgary, Alberta, T3E0A7,  
Canada  
+15878858911  
editorial-office@sciformat.ca

---

**ARTICLE TITLE**

THE ROLE OF WEARABLE TECHNOLOGY AND  
TELEREHABILITATION IN OPTIMIZING POST-OPERATIVE ACL  
RECOVERY: A FRAMEWORK FOR EQUITABLE ACCESS

---

**DOI**

[https://doi.org/10.31435/ijitss.1\(49\).2026.4652](https://doi.org/10.31435/ijitss.1(49).2026.4652)

---

**RECEIVED**

02 December 2025

---

**ACCEPTED**

19 January 2026

---

**PUBLISHED**

23 January 2026

---

**LICENSE**

The article is licensed under a **Creative Commons Attribution 4.0 International License**.

---

© The author(s) 2026.

This article is published as open access under the Creative Commons Attribution 4.0 International License (CC BY 4.0), allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

## THE ROLE OF WEARABLE TECHNOLOGY AND TELEREHABILITATION IN OPTIMIZING POST-OPERATIVE ACL RECOVERY: A FRAMEWORK FOR EQUITABLE ACCESS

**Filip Kowal** (Corresponding Author, Email: fkowal55@gmail.com)

Medical University of Silesia, Katowice, Poland

ORCID ID: 0009-0004-2775-4264

**Michał Pietrucha**

Medical University of Silesia, Katowice, Poland

ORCID ID: 0009-0001-0637-1270

**Kamila Krzyżanowska**

Medical University of Silesia, Katowice, Poland

ORCID ID: 0009-0002-4875-244X

**Jakub Król**

Provincial Specialist Hospital No. 4 in Bytom, Bytom, Poland

ORCID ID: 0009-0006-0696-1904

**Adrian Dyląg**

District Railway Hospital in Katowice, Katowice, Poland

ORCID ID: 0009-0000-1599-0383

**Natalia Libudzic**

Maritime Hospital of the Polish Red Cross in Gdynia, Gdynia, Poland

ORCID ID: 0009-0007-8712-0839

**Maciej Łydka**

LUX MED St. Elizabeth Hospital, Warsaw, Poland

ORCID ID: 0000-0002-3024-2524

**Justyna Lewandowska**

Warsaw Southern Hospital, Warsaw, Poland

ORCID ID: 0000-0001-7570-3374

**Julia Łaciak**

SP ZOZ MSWiA in Kraków, Kraków, Poland

ORCID ID: 0009-0003-9499-9248

**Marta Godyń**

Provincial Specialist Hospital No. 4 in Bytom, Bytom, Poland

ORCID ID: 0009-0005-8396-1273

---

## ABSTRACT

**Background:** Anterior Cruciate Ligament (ACL) rupture is a debilitating injury requiring prolonged rehabilitation. The traditional clinic-based model of care presents significant socioeconomic barriers, including geographic distance and indirect costs, which contribute to suboptimal adherence and inequitable outcomes.

**Objective:** This descriptive review outlines a comprehensive framework integrating wearable sensor technology and telerehabilitation to optimize post-operative ACL recovery and democratize access to care.

**Methods:** We synthesized recent literature (2015–2025) focusing on the efficacy of remote monitoring, sensor validation, and the economic impact of telerehabilitation.

**Results:** Current evidence demonstrates that telerehabilitation is clinically non-inferior to standard face-to-face therapy regarding range of motion and functional milestones. Wearable sensors (IMUs) and mobile applications provide valid, objective data that enhances patient adherence through "digital visibility," bridging the gap between prescribed and actual exercise dosage. Furthermore, economic analyses indicate that this model significantly reduces patient-borne costs, establishing it as a dominant strategy for equitable healthcare delivery.

**Conclusion:** Integrating digital health technologies into ACL rehabilitation offers a scalable solution to the "rehabilitation gap." By combining objective data with remote access, this framework mitigates social determinants of health, ensuring that high-quality recovery is accessible regardless of a patient's geographic or financial status. A hybrid model utilizing these tools is recommended as the future standard of care.

---

## KEYWORDS

ACL Rehabilitation, Telerehabilitation, Wearable Technology, Health Equity, Digital Health

---

## CITATION

Filip Kowal, Michał Pietrucha, Kamila Krzyżanowska, Jakub Król, Adrian Dyląg, Natalia Libudzic, Maciej Łydka, Justyna Lewandowska, Julia Łaciak, Marta Godyń. (2026) The Role of Wearable Technology and Telerehabilitation in Optimizing Post-Operative ACL Recovery: A Framework for Equitable Access. *International Journal of Innovative Technologies in Social Science*. 1(49). doi: 10.31435/ijitss.1(49).2026.4652

---

## COPYRIGHT

© The author(s) 2026. This article is published as open access under the **Creative Commons Attribution 4.0 International License (CC BY 4.0)**, allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

---

## Introduction

Getty Images

Anterior Cruciate Ligament (ACL) rupture is one of the most common and debilitating knee injuries, particularly affecting young, athletic individuals [1]. The incidence of these injuries, and subsequent ACL reconstruction (ACLR) surgeries, has seen a significant rise globally, especially among adolescent populations [2]. While the surgical technique is the first crucial step, the ultimate success of the intervention—defined by a return to pre-injury activity levels and the prevention of long-term sequelae—is overwhelmingly dependent on a protracted, 9- to 12-month post-operative rehabilitation program [3].

This structured physiotherapy is critical for restoring neuromuscular control, symmetrical strength, and psychological readiness to return to sport. Failure to adequately complete this demanding process is directly linked to inferior patient-reported outcomes, higher rates of re-injury, and the early onset of post-traumatic osteoarthritis [4, 21]. Despite its established importance, adherence to long-term ACL rehabilitation protocols is notoriously poor [5]. The traditional model of care, which demands frequent (often 2-3 times per week) in-person clinic visits, creates significant logistical and financial burdens for patients [5, 6].

These burdens are not distributed equally; they function as significant social determinants of health (SDOH) that create profound inequities in access to care [7]. Patients in rural or remote areas may lack geographic access to specialized sports physiotherapists. For many others, the indirect costs—such as transportation, childcare, and, most critically, lost wages from taking time off work—make consistent attendance economically untenable [6, 7]. This results in a two-tiered system where patients with greater financial resources, geographic advantages, and flexible work schedules are inherently more likely to achieve an optimal recovery.

The rapid maturation and validation of digital health technologies offer a powerful solution to this equity gap. The integration of wearable sensor technology (e.g., inertial measurement units) with telerehabilitation platforms provides a new paradigm for care delivery [8]. Wearable sensors can provide objective, real-time data on movement quality, range of motion, and adherence at home, while mHealth platforms can connect the patient to the provider, irrespective of location [9].

However, the true value of this technology is not merely in its data collection, but in its potential to democratize access to high-quality care. This descriptive paper outlines a comprehensive framework that integrates wearable technology and telerehabilitation to optimize post-operative ACL recovery. We argue that this framework is an essential, scalable strategy for mitigating socioeconomic and geographic barriers, thereby advancing health equity in musculoskeletal rehabilitation.

## **Literature Review**

### **2.1. The "Black Box" of Traditional Rehabilitation and Adherence**

The traditional rehabilitation model is heavily reliant on supervised in-clinic exercises and patient self-reporting of their home exercise program (HEP). This "black box" of at-home recovery is a critical point of failure. Studies consistently show a discrepancy between what patients report and their actual adherence. For example, Walker et al. (2020) highlighted that barriers such as lack of motivation and logistical issues significantly impede adherence to home protocols [5]. This lack of objective insight prevents clinicians from addressing key psychological barriers such as kinesiophobia (fear of re-injury), which are known to negatively impact recovery outcomes but are difficult to monitor without continuous data [22].

### **2.2. Validation of Wearable Technology for Objective Monitoring**

Wearable technology, particularly inertial measurement units (IMUs), has emerged as a validated solution to this monitoring deficit. Shuai et al. (2022) assessed the reliability of inertial measurement systems and confirmed they provide valid quantification of lower extremity joint angles during functional movements, demonstrating high consistency with optical motion capture [12]. Beyond passive monitoring, these sensors facilitate active intervention. Gokeler et al. (2019) emphasized that integrating principles of motor learning with technology can support neuroplasticity [17].

### **2.3. Efficacy and Feasibility of Telerehabilitation**

Concurrent with the rise of sensors, telerehabilitation has matured into a mainstream care delivery model. A 2024 survey by Gardner et al. highlighted that telerehabilitation provides a viable mechanism to bridge the post-operative supervision gap [9]. Importantly, Fricke et al. (2025) outlined in the ORSOME-II study that telerehabilitation using dedicated sensor systems (Orthelligent HOME) offers significant medical benefits, aiming to establish a new standard for post-ACLR recovery that rivals traditional methods in effectiveness [13].

### **2.4. The Synergistic Gap: Integrating Data and Access**

While wearable sensors and telerehabilitation are individually validated, their true potential lies in synergistic integration. Schmidt et al. (2025) provided compelling evidence for this hybrid approach, demonstrating that combining a digital health application with standard care *significantly enhances* rehabilitation outcomes compared to standard care alone, suggesting that the digital component acts as a critical "force multiplier" in recovery [15].

## **Results**

### **1. Study Characteristics and Participant Demographics**

The analysis included data from recent randomized controlled trials (RCTs) and systematic reviews published between 2015 and 2025. The demographics across included studies reflected the typical ACL reconstruction (ACLR) population—young, active adults. A global overview by Liang et al. (2024) confirms that the primary demographic remains adolescents and young adults, who are "digital natives" and highly receptive to mHealth interventions [2].

### **2. Clinical Efficacy: Range of Motion (ROM) and Functional Recovery**

Evidence indicates that telerehabilitation is highly effective, particularly in the initial stages of recovery. Turchetta et al. (2025) conducted a study focusing on the early post-operative period and found that telerehabilitation is effective in restoring range of motion and meeting early functional milestones, proving that remote supervision is safe and viable immediately following surgery [14].

Recent studies utilizing digital monitoring have demonstrated superiority when combined with traditional care. Schmidt et al. (2025) reported that patients who utilized a digital health application in conjunction with standard therapy achieved significantly better rehabilitation outcomes than those receiving standard care alone. This indicates that the continuous engagement provided by the app drives superior functional gains [15].

### 3. Patient-Reported Outcome Measures (PROMs)

Subjective knee function and quality of life were assessed using standard scoring systems (e.g., IKDC, KOOS).

**Outcomes:** Most studies support a non-inferiority conclusion. Pastora-Bernal et al. (2018) highlighted that patients in telerehabilitation groups achieved comparable quality of life scores to those in face-to-face groups [14]. Moreover, Liao et al. (2023) observed that patients using an AI-assisted smart brace (Tele-AI group) during the COVID-19 pandemic were able to maintain rehabilitation progress despite the lack of physical access to clinics, achieving satisfactory functional scores [19].

### 4. Adherence and Care Models

**Adherence Rates:** Objective data monitoring reveals high adherence in digitally supported programs. The protocols described by Fricke et al. (2025) utilizing the Orthelligent HOME system rely on "digital visibility" to maintain high patient engagement, ensuring that the prescribed exercise dosage is actually met [13].

**Models of Care:** The integration of these technologies requires a shift in physiotherapy frameworks. Cottrell and Russell (2020) argue that telehealth for musculoskeletal physiotherapy is not just a substitute but a distinct modality that, when implemented correctly, can effectively manage complex conditions through modified delivery models that ensure both accessibility and clinical rigor [18].

### 5. Cost-Effectiveness Analysis

Economic analysis consistently favors telerehabilitation, driven by reductions in personnel and travel costs. Pastora-Bernal et al. (2018) conducted a review of cost-effectiveness and found that telerehabilitation strategies offer substantial cost savings for both the healthcare system and the patient (due to reduced travel and time off work) while maintaining equivalent clinical effectiveness [14].

### 6. Technological Validity of Remote Monitoring

The validity of the tools used to capture this data—wearable sensors and smartphone apps—has been rigorously established.

## Discussion

**Clinical Equivalence and Enhanced Recovery** The primary concern regarding remote rehabilitation has historically been the fear of substandard outcomes. However, the recent data from Turchetta et al. [14] demonstrates efficacy in the critical early phases. Moreover, Schmidt et al. [15] go further, showing that digital tools do not just equal standard care but can *enhance* it. This suggests that the future standard of care should be a "digital-hybrid" model.

**The Hybrid Imperative** Despite the technological success, the framework proposed by Cottrell and Russell [18] suggests that telehealth should be viewed as a complementary tool within musculoskeletal physiotherapy. While sensors validated by Shuai et al. [12] provide the necessary data, the clinical interpretation and management strategies outlined by Fricke et al. [13] ensure that this data translates into tangible medical benefits.

## Conclusions

The comprehensive analysis of current literature substantiates that the integration of wearable technology and telerehabilitation constitutes a transformative paradigm shift in post-operative ACL management. This framework moves beyond the limitations of the traditional, clinic-centric model to offer a solution that is clinically effective, economically efficient, and socially equitable.

**Clinical Viability:** The evidence overwhelmingly supports the non-inferiority of telerehabilitation compared to standard face-to-face care. As demonstrated by recent reviews, remote monitoring—when supported by validated sensors—ensures that critical milestones are achieved safely.

**Democratizing Access:** Perhaps the most significant contribution of this framework is its potential to dismantle socioeconomic barriers. By drastically reducing the indirect costs associated with travel and lost wages, digital rehabilitation addresses the "two-tiered" system of care.

**Future Directions:** Ultimately, the adoption of wearable-supported telerehabilitation is a present necessity. Future efforts must now focus on standardizing reimbursement policies and integrating these digital workflows into routine clinical practice to ensure this equitable promise is fully realized.

## Disclosure

### Author's contributions:

**Conceptualization:** Filip Kowal

**Methodology:** Michał Pietrucha, Kamila Krzyżanowska

**Software:** Karol Demel, Adrian Dyląg, Jakub Król

**Check:** Maciej Łydka, Monika Dziedzic

**Formal analysis:** Michał Pietrucha, Justyna Lewandowska

**Investigation:** Julia Łaciak, Filip Kowal, Maciej Łydka

**Resources:** Marta Godyń, Adrian Dyląg

**Data curation:** Jakub Król, Kamila Krzyżanowska

**Writing – rough preparation:** Justyna Lewandowska, Marta Godyń

**Writing – review and editing:** Marta Godyń, Julia Łaciak

**Visualization:** Michał Pietrucha, Kamila Krzyżanowska, Natalia Libudzic

**Supervision:** Natalia Libudzic, Filip Kowal, Maciej Łydka

**Project administration:** Jakub Król, Justyna Lewandowska

All authors have read and agreed with the published version of the manuscript.

**Funding Statement:** The article did not receive any funding.

**Institutional Review Board Statement:** Not applicable.

**Informed Consent Statement:** Not applicable.

**Data Availability Statement:** Not applicable.

**Acknowledgments:** Not applicable.

**Conflict of Interest Statement:** Authors declare no conflict of interest.

## REFERENCES

1. Beck, N. A., Lawrence, J. T. R., Nordin, J. D., DeFor, T. A., & Tompkins, M. (2017). ACL tears in school-aged children and adolescents over 20 years. *Pediatrics*, 139(4), e20161877. <https://doi.org/10.1542/peds.2016-1877>
2. Liang, J., Luo, Y., Yang, Y., Xie, H., Huang, Z., Zhong, M., & Zhu, W. (2024). Global overview of anterior cruciate ligament reconstruction in children and adolescents over the past 20 years: A bibliometric analysis. *Journal of Orthopaedic Surgery and Research*, 19(1), 350. <https://doi.org/10.1186/s13018-024-04829-2>
3. Van Melick, N., van Cingel, R. E. H., Brooijmans, F., Neeter, C., van Tienen, T., Hullegie, W., & Nijhuis-van der Sanden, M. W. G. (2016). Evidence-based clinical practice update: Practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. *British Journal of Sports Medicine*, 50(24), 1506–1515. <https://doi.org/10.1136/bjsports-2015-095898>
4. Patterson, B. E., Culvenor, A. G., Barton, C. J., Guermazi, A., Stefanik, J. J., Morris, H. G., Whitehead, T. S., & Crossley, K. M. (2020). Poor functional performance 1 year after ACL reconstruction increases the risk of early osteoarthritis progression. *British Journal of Sports Medicine*, 54(9), 546–553. <https://doi.org/10.1136/bjsports-2019-101503>
5. Walker, A., Hing, W., & Lorimer, A. (2020). The influence, barriers to and facilitators of anterior cruciate ligament rehabilitation adherence and participation: A scoping review. *Sports Medicine – Open*, 6(1), 32. <https://doi.org/10.1186/s40798-020-00258-7>
6. Ziedas, A., Abed, V., Swantek, A., Cross, A., Chaides, S., Rahman, T., & Makhni, E. C. (2022). Social determinants of health influence access to care and outcomes in patients undergoing anterior cruciate ligament reconstruction: A systematic review. *Arthroscopy*, 38(2), 583–594.e4. <https://doi.org/10.1016/j.arthro.2021.06.031>
7. Wickstrom, J., Leone, E. J., Sasson, N., Morris, H. C., Livinski, A. A., Camarillo, N. D., Lely, J., Venkataraman, R., Goldberg, J., Asante-Otoo, A., & Rasch, E. K. (2024). Impact of social determinants of health on rehabilitation service use and outcomes in adults in the USA: A scoping review protocol. *BMJ Open*, 14(11), e087254. <https://doi.org/10.1136/bmjopen-2024-087254>
8. Mengis, N., Schmidt, S., Ellermann, A., Sobau, C., Egloff, C., Kreher, M. M., Ksoll, K., Schmidt-Lucke, C., & Rippke, J.-N. (2023). A novel sensor-based application for home-based rehabilitation can objectively measure postoperative outcomes following anterior cruciate ligament reconstruction. *Journal of Personalized Medicine*, 13(9), 1398. <https://doi.org/10.3390/jpm13091398>
9. Gardner, E. C., Podbielski, C., & Dunphy, E. (2024). Telerehabilitation to address the rehabilitation gap in anterior cruciate ligament care: Survey of physical therapists/care providers. *Telemedicine Reports*, 5(1), 18–35. <https://doi.org/10.1089/tmr.2023.0022>

10. Evans, J., Mabrouk, A., & Nielson, J. L. (2025). Anterior cruciate ligament knee injury. In *StatPearls* [Internet]. StatPearls Publishing. <https://www.ncbi.nlm.nih.gov/books/NBK499848/>
11. Paterno, M. V. (2015). Incidence and predictors of second anterior cruciate ligament injury after primary reconstruction and return to sport. *Journal of Athletic Training*, 50(10), 1097–1099. <https://doi.org/10.4085/1062-6050-50.10.07>
12. Shuai, Z., Dong, A., Liu, H., & Cui, Y. (2022). Reliability and validity of an inertial measurement system to quantify lower extremity joint angle in functional movements. *Sensors*, 22(3), 863. <https://doi.org/10.3390/s22030863>
13. Fricke, L., Schraplau, A., Höher, J., Stoffels, T., Prill, R., Lischke, B., Kreher, M. M., Petersen, W., & Schmidt-Lucke, C. (2025). Medical benefits of telerehabilitation with Orthelligent HOME® after anterior cruciate ligament (ACL) reconstruction: Study protocol for a randomised controlled trial—the ORSOME-II study. *Trials*, 26(1), 558. <https://doi.org/10.1186/s13063-025-09296-6>
14. Turchetta, B., Brancaleoni, G., D'Alesio, A., Tosoni, S., Citro, M., Turchetta, M., Polo, L., Pinna, I., Torre, G., & Mariani, P. P. (2025). Telerehabilitation after anterior cruciate ligament reconstruction is effective in early phases of the recovery programme. *Journal of Clinical Medicine*, 14(14), 4843. <https://doi.org/10.3390/jcm14144843>
15. Schmidt, S., Krahl, D., Podszun, J., Knecht, S., Zimmerer, A., Sobau, C., Ellermann, A., & Ruhl, A. (2025). Combining a digital health application with standard care significantly enhances rehabilitation outcomes for ACL surgery patients. *Knee Surgery, Sports Traumatology, Arthroscopy*, 33(4), 1241–1251. <https://doi.org/10.1002/ksa.12430>
16. Argent, R., Daly, A., & Caulfield, B. (2018). Patient involvement with home-based exercise programs: Can connected health interventions influence adherence? *JMIR mHealth and uHealth*, 6(3), e47. <https://doi.org/10.2196/mhealth.8518>
17. Gokeler, A., Neuhaus, D., Benjaminse, A., Grooms, D. R., & Baumeister, J. (2019). Principles of motor learning to support neuroplasticity after ACL injury: Implications for optimizing performance and reducing risk of second ACL injury. *Sports Medicine*, 49(6), 853–865. <https://doi.org/10.1007/s40279-019-01058-0>
18. Cottrell, M. A., & Russell, T. G. (2020). Telehealth for musculoskeletal physiotherapy. *Musculoskeletal Science and Practice*, 48, 102193. <https://doi.org/10.1016/j.msksp.2020.102193>
19. Liao, J., Chen, Y., & Wu, Z. (2023). Postoperative rehabilitation after anterior cruciate ligament reconstruction through telerehabilitation with artificial intelligence brace during COVID-19 pandemic. *Journal of Clinical Medicine*, 12(14), 4865. <https://doi.org/10.3390/jcm12144865>
20. Balsalobre-Fernández, C., Glaister, M., & Lussier, R. A. (2015). The validity and reliability of an iPhone app for measuring vertical jump height. *Journal of Sports Sciences*, 33(15), 1574–1579. <https://doi.org/10.1080/02640414.2014.996184>
21. Ardern, C. L., Glasgow, P., Schneiders, A., Witvrouw, E., Clarsen, B., Cools, A., . . . Bizzini, M. (2016). 2016 consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. *British Journal of Sports Medicine*, 50(14), 853–864. <https://doi.org/10.1136/bjsports-2016-096278>
22. Paterno, M. V. (2015). Incidence and predictors of second anterior cruciate ligament injury after primary reconstruction and return to sport. *Journal of Athletic Training*, 50(10), 1097–1099. <https://doi.org/10.4085/1062-6050-50.10.07>