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ABSTRACT 

Purpose: The primary objective of this review is to evaluate the efficacy, clinical applications, and current limitations of 
Artificial Intelligence (AI) and Machine Learning (ML) in diagnosing cardiovascular diseases (CVD) among competitive 
athletes. Specifically, this study addresses the critical diagnostic challenge of differentiating benign physiological adaptations 
known as "athlete's heart" from potentially lethal pathologies, including cardiomyopathies and channelopathies, to prevent 
sudden cardiac death. 
Materials and Methods: A systematic literature search was conducted across PubMed, Scopus, and Web of Science 
databases covering the period from 2000 to 2025. The review identified and synthesized 48 key studies utilizing AI 
algorithms—specifically deep learning applied to electrocardiography (AI-ECG) and automated imaging analysis 
(Echocardiography, CMR)—for the detection of Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Right Ventricular 
Cardiomyopathy (ARVC), valvular anomalies, and inherited channelopathies. Diagnostic performance metrics were 
analyzed to compare AI methodologies against standard clinical criteria. 
Results: Deep learning models applied to ECG demonstrate superior sensitivity (>90%) in detecting occult 
cardiomyopathies compared to traditional methods , while AI-enhanced imaging significantly improves the reproducibility 
of tissue characterization. AI algorithms, such as those analyzing phonocardiograms, show efficacy comparable to 
echocardiography in detecting valvular heart disease. 
Conclusions: AI represents a paradigm shift in sports cardiology, offering potential for scalable and cost-effective screening. 
However, widespread clinical implementation is currently hindered by the "black box" nature of algorithms and the scarcity 
of large, athlete-specific training datasets. Future deployment requires explainable AI models validated on diverse athletic 
cohorts. 
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Introduction 

Cardiovascular diseases remain one of the leading causes of morbidity and mortality in young 

competitive athletes, with conditions such as hypertrophic cardiomyopathy (HCM), arrhythmogenic right 

ventricular cardiomyopathy (ARVC), valvular heart diseases, congenital coronary artery anomalies (CCAA), 

myocarditis, and inherited channelopathies representing the most frequent substrates of exercise-related 

sudden cardiac death. (Bhatia et al., 2022; Campuzano et al., 2012; Cotet et al., 2025; Gräni, 2018; Schwartz 
et al., 2017; Ullal et al., 2016)Despite major advances in sports cardiology, the early identification of these 

disorders continues to pose substantial challenges. Physiological cardiac remodeling induced by intensive 

training—characterized by chamber dilation, augmented left ventricular mass, increased vagal tone, and 

hemodynamic adaptations—often mimics or obscures pathological findings.(Augustine & Howard, 2018; 

Henning, 2024; Lauschke & Maisch, 2009; Palermi et al., 2023) As a result, traditional diagnostic tools such 

as electrocardiography (ECG) and echocardiography may have limited specificity and sensitivity in 

differentiating benign adaptive features from early or subtle manifestations of cardiovascular 

disease.(Cavarretta et al., 2024; D’Ascenzi et al., 2021) 

Cardiac magnetic resonance (CMR), advanced echocardiographic techniques, and genetic testing have 

significantly improved diagnostic accuracy; however, their routine use in large athletic populations is 

constrained by cost, accessibility, and the need for specialist interpretation.(D’Ascenzi et al., 2021) Moreover, 

https://www.zotero.org/google-docs/?saVLIc
https://www.zotero.org/google-docs/?saVLIc
https://www.zotero.org/google-docs/?hUYBV1
https://www.zotero.org/google-docs/?hUYBV1
https://www.zotero.org/google-docs/?rqMDb3
https://www.zotero.org/google-docs/?uhUUjE
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several high-risk cardiovascular conditions—such as concealed long QT syndrome, early-stage ARVC, or 

congenital coronary anomalies—may remain undetected despite comprehensive evaluation.(Bos et al., 2021) 

In recent years, artificial intelligence (AI) has emerged as a transformative tool with the potential to 

enhance cardiovascular screening and diagnostics.(Smaranda et al., 2024) Deep learning algorithms applied to 

ECG, cardiac imaging, auscultation, and wearable device data have demonstrated the ability to detect subtle 

morphological, electrical, or hemodynamic patterns that are often imperceptible to clinicians.(Zhou et al., 2025) 

Early studies suggest that AI-enhanced ECG can identify HCM even when the resting ECG appears normal, 

distinguish physiological from pathological hypertrophy, and improve detection of inherited arrhythmia 

syndromes.(Croon et al., 2025; Jiang et al., 2024; Ko et al., 2020) Similarly, AI-powered image analysis in 

echocardiography and CMR has shown promise in automated quantification of ventricular function, 

myocardial deformation, scar burden, and valvular abnormalities—yielding highly reproducible measurements 

with reduced inter-observer variability.(Bourfiss et al., 2023; Duffy et al., 2022; Fahmy et al., 2022; Monopoli 

et al., 2025) 

Despite these advances, significant limitations persist. Many AI models are developed using datasets 

derived from general clinical populations, which may not accurately represent the unique physiological 

characteristics of trained athletes.(Bellfield et al., 2022) Furthermore, rarer conditions—such as congenital 

valvular defects or ARVC—lack large, well-annotated datasets suitable for robust training and validation of 
machine learning systems. As a result, the generalizability of AI-based tools to athletic cohorts remains 

incompletely established.(Aljehani et al., 2023; Jone et al., 2022; Kübler et al., 2021) 

This article provides a comprehensive overview of the current and emerging role of artificial intelligence 

in the diagnosis of cardiovascular diseases relevant to competitive athletes. It examines the capabilities and 

limitations of AI-based methods across key clinical entities—including hypertrophic cardiomyopathy, ARVC, 

congenital valvular heart disease, congenital coronary anomalies, myocarditis, and inherited 

channelopathies—while highlighting the diagnostic challenges inherent to the athletic population. Particular 

emphasis is placed on multimodal AI approaches that integrate ECG, imaging, and physiological signals, as 

well as on the prerequisites for safe and effective clinical implementation in sports medicine.(Zhou et al., 2025) 

 

Methodology 

To compile this comprehensive overview, a systematic literature review was conducted. The PubMed, 

Scopus, and Web of Science databases were searched covering the period from January 2000 to February 2025. 

The search strategy employed a combination of Medical Subject Headings (MeSH) and text keywords, 

including: “Cardiology”, “Athlete’s Heart”, “Artificial Intelligence”, “Sudden Cardiac Death”, 

“Cardiovascular Screening”. 

1. Investigated the pathophysiology of exercise-related cardiac remodeling and its differentiation from 

pathology (e.g., HCM, ARVC, DCM). 

2. Evaluated the performance of AI algorithms (CNNs, deep learning) applied to ECG, 

Echocardiography, CMR, or digital auscultation. 

3. Addressed specific diagnostic challenges in athletic populations, such as the "gray zone" of 

hypertrophy or repolarization anomalies. 

Studies were selected based on their methodological rigor and relevance to the specific clinical entities 

discussed (HCM, ARVC, CCAA, Valvular Disease, Myocarditis, and Channelopathies). A total of 48 key 

references were synthesized to assess the diagnostic accuracy (sensitivity, specificity, AUC) and clinical 

limitations of current AI tools. 

 

Results 

1. Hypertrophic Cardiomyopathy 

Hypertrophic cardiomyopathy (HCM) in athletes represents one of the most significant challenges in 

modern sports medicine. This condition, characterized by abnormal thickening of the myocardial walls, is the 

most common cause of sudden cardiac death in young, physically active individuals.(Malhotra & Sharma, 

2017; Ullal et al., 2016) Early identification of HCM is crucial; however, in athletes, conventional diagnostic 

methods are frequently insufficient because the physiological adaptations induced by intensive training may 

resemble the disease phenotype.(Henning, 2024; Kübler et al., 2021; Lauschke & Maisch, 2009) In recent 

years, interest in artificial intelligence (AI) techniques has been steadily increasing, as they hold the potential 

to facilitate the differentiation of hypertrophic cardiomyopathy from the so-called “athlete’s heart,” thereby 

improving the diagnostic process and enhancing athlete safety.(Siontis et al., 2024) 

https://www.zotero.org/google-docs/?90PeHX
https://www.zotero.org/google-docs/?TgG4bF
https://www.zotero.org/google-docs/?9caUKX
https://www.zotero.org/google-docs/?TsjaCr
https://www.zotero.org/google-docs/?6aPZ9r
https://www.zotero.org/google-docs/?6aPZ9r
https://www.zotero.org/google-docs/?1Vq4ru
https://www.zotero.org/google-docs/?owJ0jq
https://www.zotero.org/google-docs/?o9Yxa6
https://www.zotero.org/google-docs/?9OwJFY
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Pathophysiological Mechanisms 

From a pathophysiological perspective, HCM is fundamentally distinct from the hemodynamic 

adaptations observed in the "athlete's heart." It is primarily a genetic disorder of the cardiac sarcomere, most 

commonly inherited in an autosomal dominant pattern caused by mutations in genes encoding contractile 

proteins, such as β-myosin heavy chain (MYH7) and cardiac myosin-binding protein C (MYBPC3).(Malhotra 

& Sharma, 2017) 

The critical histological hallmark that differentiates HCM from physiological remodeling is myocyte 

disarray—a chaotic architectural arrangement of cardiomyocytes—accompanied by increased interstitial 

fibrosis and intramural coronary arteriole dysplasia (small vessel disease). (Henning, 2024; Lauschke & 

Maisch, 2009) While athletic training induces a harmonic, reversible increase in myocyte size with preserved 

cellular alignment, HCM presents with structural disorganization that disrupts normal electrical propagation. 

This combination of cellular disarray and replacement fibrosis creates a heterogeneous myocardial 

substrate. This substrate facilitates re-entrant electrical circuits, thereby predisposing individuals to malignant 

ventricular tachyarrhythmias, which are the primary mechanism of sudden cardiac death in these athletes. 

(Bhatia et al., 2022; Fahmy et al., 2022) Anatomically, this often manifests as asymmetric hypertrophy 

(predominantly affecting the interventricular septum), which may lead to dynamic left ventricular outflow tract 

(LVOT) obstruction and diastolic dysfunction—features rarely observed in pure physiological hypertrophy. 
(Augustine & Howard, 2018) 

HCM vs. Athlete’s Heart – Diagnostic Challenges 

The athlete’s heart undergoes several physiological adaptations in response to systematic training, 

including mild left ventricular hypertrophy, chamber enlargement, and resting bradycardia. Although 

physiological, these changes may mimic the appearance of HCM, particularly in the early stages of the disease 

or in cases of mild hypertrophy. Distinguishing physiological adaptation from pathology remains a major 

challenge.(Augustine & Howard, 2018; Lauschke & Maisch, 2009) Traditional diagnostic tests such as ECG 

and echocardiography do not always provide conclusive information—especially in endurance athletes, in 

whom myocardial wall thickness may reach borderline values.(Cavarretta et al., 2024; Henning, 2024) 

Importance of Early Diagnosis and Associated Risks in Athletes 

In some athletes, the first manifestation of HCM may be sudden cardiac death, typically during intense 

physical exertion.(Bhatia et al., 2022) For this reason, sports federations worldwide recommend routine 

screening that includes ECG and echocardiography.(D’Ascenzi et al., 2021). Difficulties occur when it is 

challenging to differentiate physiological adaptation from structural pathology, which may require advanced 

diagnostic tools such as cardiac magnetic resonance imaging (CMR) or genetic testing. These are precisely the 

situations in which artificial intelligence is assuming an increasingly important role.(Baba Ali et al., 2024; 

Lauschke & Maisch, 2009) 

AI in HCM Diagnostics – New Opportunities 

Artificial intelligence—particularly deep learning techniques—has been transforming cardiac diagnostics in 

recent years. One of the first areas in which AI demonstrated notable effectiveness is ECG analysis. AI-ECG 

algorithms trained on hundreds of thousands of recordings can detect subtle patterns imperceptible to the human 

eye. Studies from institutions such as the Mayo Clinic have shown that AI can identify HCM with very high 

sensitivity and specificity, even when a standard ECG appears normal.(Ko et al., 2020) 

Another rapidly developing area is AI-based interpretation of cardiac imaging. Deep learning algorithms 

used in echocardiography and CMR can precisely assess wall thickness, chamber volumes, myocardial motion, 

and detect scarring or fibrosis.(Fahmy et al., 2022) In athletes, AI can assist in differentiating the uniform, 

symmetrical hypertrophy typical of the athlete’s heart from the asymmetric hypertrophy characteristic of HCM. 

Importantly, these algorithms provide highly reproducible analyses, reducing inter-observer 

variability.(Bellfield et al., 2022; Duffy et al., 2022; Yu et al., 2022) 

Mobile Diagnostics and the Future of Screening 

With the advancement of portable medical technologies such as smartwatches and mobile 

electrocardiographs, ECG recordings can now be obtained during routine training activities. Integrating these data 

with AI algorithms may enable continuous monitoring and early detection of concerning abnormalities. Ongoing 

clinical studies are investigating whether AI analyzing single-lead ECG recordings (e.g., from a smartwatch) can 

detect HCM and differentiate it from training-related physiological adaptations.(Croon et al., 2025) 
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2. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of the myocardium 

characterized by fibrofatty replacement of cardiac muscle, impaired right ventricular wall motion, and a 

propensity for malignant arrhythmias. (Campuzano et al., 2012) In athletes, the diagnosis of ARVC is 

particularly challenging, as physiological adaptations to intensive training—such as right ventricular cavity 

enlargement or repolarization changes—may mimic pathological features, creating a diagnostic “grey 

zone.”(Campuzano et al., 2012) In this context, AI-based technologies capable of analyzing both ECG signals 

and cardiac imaging (CMR, echocardiography) may offer additional tools for early disease detection and risk 

stratification. 

Pathophysiological Mechanisms and the Impact of Exercise 

From a pathophysiological standpoint, ARVC is predominantly a disease of the desmosome, a protein 

complex responsible for mechanical cell-to-cell adhesion. In the majority of cases, the condition is driven by 

mutations in genes encoding desmosomal proteins, such as plakophilin-2 (PKP2) or desmoglein-2 (DSG2), 

which compromise the structural integrity of the intercalated discs.(Corrado et al., 2017) 

The athletic population is uniquely vulnerable due to the interaction between this genetic substrate and 

mechanical stress. Intensive physical exertion increases right ventricular wall stress, which disrupts these 

fragile desmosomal connections, triggering myocyte necrosis and an inflammatory response.(Campuzano et 
al., 2012) This process leads to the hallmark fibrofatty replacement of the myocardium, which creates a 

substrate for re-entrant ventricular arrhythmias. Crucially, molecular studies suggest that "electrical 

remodeling"—characterized by the downregulation of gap junction proteins (Connexin 43)—often precedes 

macroscopic structural damage.(Haq et al., 2024) This dissociation explains why electrical instability may 

manifest on the ECG (and potentially be detected by AI) before overt structural defects are visible on standard 

cardiac imaging. 

AI-Enhanced Electrocardiography as an Emerging Diagnostic Modality for ARVC 

One of the earliest and most significant examples of the translational application of artificial intelligence 

in ARVC diagnostics is the study describing the “AI-enhanced ECG”—a deep-learning model capable of 

detecting ARVC-related features from a standard 12-lead electrocardiogram. Haq et al. demonstrated that a 

neural network trained on datasets of patients with confirmed ARVC can distinguish affected individuals from 

controls with good diagnostic performance and may serve as a rule-out biomarker in clinical populations. This 

study suggests that AI-ECG algorithms are capable of identifying subtle morphological and temporal patterns 

that are either imperceptible or inconsistently recognized by human readers.(Haq et al., 2024) 

Machine Learning–Enhanced CMR for Automated Assessment of Right Ventricular Dysfunction 

in ARVC 

Cardiac magnetic resonance imaging (CMR) remains the gold standard for the assessment of right 

ventricular morphology and function, as well as for the identification of tissue characteristics in ARVC. In this 

field, studies have increasingly applied machine learning techniques for the automated quantification of 

myocardial motion, regional wall motion abnormalities, and strain tracking. For example, research on deep 

learning–based automated strain analysis has demonstrated significant differences in peak strain parameters 

between patients with ARVC and healthy controls, suggesting the potential for automated detection of 

pathological right ventricular dyskinesia. Such algorithms enhance the objectivity of regional wall motion 

assessment—an aspect that is critical for the diagnosis of ARVC.(Bourfiss et al., 2022, 2023) 

Limitations in Data Availability for AI-Based ARVC Research in Athletes 

It should be emphasized, however, that current knowledge has limitations. ARVC is a relatively rare 

disease, which hampers the collection of large, balanced training datasets—particularly those including 

athletes exhibiting physiological right ventricular remodeling.(Aljehani et al., 2023) Nevertheless, it is 

important to acknowledge the limitations of the current evidence. ARVC is a relatively rare condition, which 

complicates the assembly of large, well-balanced training datasets—especially those incorporating athletes 

with physiological right ventricular remodeling. (Kübler et al., 2021) 
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3. Congenital Valvular Heart Disease 

Congenital valvular heart disease (CVHD) constitutes a significant portion of developmental cardiac 

disorders. Despite advances in prenatal and pediatric diagnostics, many valvular defects remain undiagnosed 

or overlooked—particularly in adults or athletes whose hearts have undergone hemodynamic adaptations due 

to intensive physical activity.(Viera et al., 2024) In this context, artificial intelligence (AI)–based technologies 

provide promising tools that may facilitate early detection and management of CVHD. 

Pathophysiological Mechanisms and Hemodynamic Impact 

The pathophysiology of CVHD in athletes is defined by the interaction between altered valve mechanics 

and the high-flow hemodynamic state induced by exercise. The most common entity is the bicuspid aortic 

valve (BAV), affecting 1–2% of the population. In BAV, the abnormal leaflet architecture generates turbulent 

blood flow and eccentric shear stress on the aortic wall, predisposing the athlete not only to valvular stenosis 

or regurgitation but also to aortopathy and potential dissection. (Jone et al., 2022; Viera et al., 2024)Under 

resting conditions, mild valvular defects may remain hemodynamically silent. However, during intense 

physical exertion, cardiac output can increase five-fold (>30 L/min). In the presence of valvular stenosis (e.g., 

aortic or pulmonary), this increased flow necessitates supra-physiological intraventricular pressures to 

maintain perfusion, leading to concentric hypertrophy and potential subendocardial ischemia.(Palermi et al., 

2023) Conversely, in regurgitant lesions (e.g., mitral valve prolapse), the "volume load" of exercise compounds 
the regurgitant volume, accelerating ventricular dilation and increasing wall tension. Over time, these 

mechanical stressors can trigger maladaptive remodeling, fibrosis, and electrical instability, distinguishing the 

pathological substrate from benign athletic adaptation. (Jone et al., 2022) 

AI-Enhanced Auscultation for the Detection of Left-Sided Valvular Heart Disease 

Recent years have provided substantial evidence that AI can effectively support the diagnosis of valvular 

heart disease, both acquired and congenital. In a groundbreaking study published in 2025, researchers 

employed an “AI stethoscope” (an electronic stethoscope combined with a machine learning algorithm) which, 

after collecting data from 514 patients, was able to automatically identify left-sided valvular heart disease. In 

the testing phase, the algorithm achieved reasonable sensitivity and specificity (sensitivity ~70%, specificity 

~74%, AU‑ROC ~0.76), suggesting that a simple, rapid, and cost-effective method—analogous to 

auscultation—could serve as a screening tool.(Zhou et al., 2025) 

Deep Learning in ECG and Multimodal Imaging 

Another promising direction involves systems based on conventional electrocardiography (ECG). A 

2025 study demonstrated that AI-ECG models could predict the risk of developing clinically significant 

valvular regurgitation (mitral, aortic, or tricuspid) by leveraging large datasets of paired ECG and 

echocardiography recordings, encompassing nearly one million ECG‑echo pairs. This approach opens the 

possibility that, in athletic populations where echocardiography or CMR is not routinely performed, AI‑ECG 

could serve as a cost-effective screening tool.(Liang et al., 2025; Lin et al., 2024) 

In the realm of cardiac imaging, AI has also demonstrated substantial potential. Recent studies indicate 

that AI algorithms can automatically segment valvular structures, analyze their anatomy and function, and 

assist in classifying patients according to their risk of disease progression. This represents a significant advance, 

as the assessment of valvular defects is becoming less dependent on operator experience and more objective 

and reproducible.(Huang et al., 2023; Monopoli et al., 2025) 

Moreover, research on digital auscultation and heart sound analysis using deep learning shows that AI can 

match or even surpass the performance of clinicians. In the referenced study, the algorithm detected moderate-to-

severe aortic stenosis with a sensitivity of 93.2%, whereas the expert annotators demonstrated sensitivities ranging 

from 82.5% to 97.5% depending on the reader. In the case of mitral regurgitation, the algorithm achieved a 

sensitivity of 66.2%, compared with 58.6% to 82.8% for the clinicians.(Chorba et al., 2021) 

Diagnostic Limitations in the Athletic Population 

Despite promising results, the application of AI to valvular heart disease—particularly in specialized 

populations such as athletes—presents important challenges and limitations. First, most available studies focus 

on acquired valvular disorders (e.g., degenerative regurgitation, calcification) rather than congenital defects, 

meaning that algorithms may not be optimized to detect subtle developmental anomalies characteristic of 

CVHD.(Jone et al., 2022) 

Second, logistical and epidemiological challenges exist: congenital valvular defects are relatively rare 

in adult populations, making it difficult to assemble large, well-annotated training datasets that include 

physically active individuals or athletes. Without appropriately diverse data, machine learning models are 

prone to overfitting or limited generalizability.(Jone et al., 2022) 

https://www.zotero.org/google-docs/?u38vXB
https://www.zotero.org/google-docs/?GE8fvE
https://www.zotero.org/google-docs/?k0ehPt
https://www.zotero.org/google-docs/?k0ehPt
https://www.zotero.org/google-docs/?wnpA65
https://www.zotero.org/google-docs/?a9ES4q
https://www.zotero.org/google-docs/?r2QZXc
https://www.zotero.org/google-docs/?B0IB3Y
https://www.zotero.org/google-docs/?DJv3mw
https://www.zotero.org/google-docs/?dZgIop
https://www.zotero.org/google-docs/?TX0WQT


4(48) (2025): International Journal of Innovative Technologies in Social Science  

 

e-ISSN: 2544-9435 7 

 

Finally, cardiac adaptations in athletes (remodeling, chamber enlargement, hemodynamic changes) may 

mask valvular abnormalities or produce variable echocardiographic appearances, complicating accurate 

classification. In such cases, a multimodal approach—integrating AI‑ECG, AI‑auscultation, and 

AI‑echo/CMR—may prove crucial.(Palermi et al., 2023) 

 

4. Cardiomyopathies and Myocarditis 

Cardiomyopathies—including hypertrophic cardiomyopathy, dilated cardiomyopathy, and 

arrhythmogenic right ventricular cardiomyopathy—and myocarditis are major causes of sudden cardiac death 

and exercise restrictions in young and middle-aged athletes. (Cotet et al., 2025)Their diagnostic workup relies 

on a combination of clinical history, electrocardiography, echocardiography, and advanced cardiac imaging, 

particularly cardiac magnetic resonance (CMR), while indeterminate cases may require histopathological 

confirmation through endomyocardial biopsy.(Cotet et al., 2025; Rapezzi et al., 2013) 

Pathophysiological Mechanisms: Inflammation vs. Adaptation 

The pathophysiology of myocarditis and non-hypertrophic cardiomyopathies differs fundamentally 

from the physiologic hypertrophy of the athlete's heart. Myocarditis is primarily an inflammatory disease of 

the myocardium, typically triggered by viral infection (e.g., Coxsackievirus, Parvovirus B19, or SARS-CoV-

2). The disease progresses through three phases: acute viral injury, immunological activation, and—in some 
cases—chronic fibrosis.(Tschöpe et al., 2021) 

In athletes, this process is critically dangerous because intense physical exertion during the acute phase 

can exacerbate viral replication and enhance the inflammatory response, leading to extensive myocyte necrosis 

and accelerated arrhythmogenesis. This results in myocardial edema and, subsequently, replacement fibrosis 

(scarring), which serves as a permanent substrate for re-entrant ventricular tachycardia.(Cotet et al., 2025; 

Łajczak & Jóźwik, 2024) 

In contrast, Dilated Cardiomyopathy (DCM) is often caused by cytoskeletal or sarcomeric gene 

mutations (e.g., TTN, LMNA) leading to cardiomyocyte elongation, wall thinning ("eccentric hypertrophy"), 

and depressed systolic function. Unlike the reversible chamber dilation seen in endurance athletes (where 

ejection fraction remains normal or slightly lower at rest but recruits normally during exercise), pathological 

DCM is characterized by reduced contractile reserve and interstitial fibrosis.(Rapezzi et al., 2013) 

AI-Enhanced Multimodal Diagnostics 

The Role of AI in CMR and Tissue Characterization Cardiac magnetic resonance (CMR) remains the 

gold standard for non-invasive tissue characterization, utilizing the updated Lake Louise Criteria to detect 

myocardial edema (T2-weighted imaging) and fibrosis (Late Gadolinium Enhancement, LGE). Artificial 

intelligence has significantly enhanced this modality. Deep learning algorithms are now capable of automating 

the segmentation of the myocardium and quantifying LGE burden with precision that matches or exceeds 

human experts. For instance, AI models described by Zhang et al. (2024) and Wang et al. (2024) automate the 

measurement of T1 and T2 mapping values, allowing for the objective detection of diffuse fibrosis or subtle 

edema that might be missed by visual inspection alone. This "AI-CMR" approach is particularly valuable in 

distinguishing the physiological T1 mapping values of a trained athlete from the pathological elevation seen 

in early diffuse fibrosis. (Shyam-Sundar et al., 2024; Wang et al., 2024; Zhang et al., 2024) 

Multimodal Integration (ECG + Imaging) Beyond imaging, AI systems have demonstrated 

capabilities in analyzing 12-lead ECG signals (AI-ECG) to detect subtle repolarization abnormalities 

associated with early cardiomyopathy. Multimodal models integrating AI-ECG, AI-auscultation, and AI-

echo/CMR theoretically enhance the accuracy of differentiating physiological athletic adaptation from 

pathology by cross-referencing electrical anomalies with structural data. (Łajczak & Jóźwik, 2024) 

Diagnostic Limitations in Athletic Cohorts 

Despite these technological strides, real-world implementation remains constrained by several factors. 

First, the physiological cardiac adaptations to training—such as chamber enlargement and increased vagal tone—

can mimic the "dilated" phenotype of DCM or the inflammatory changes of myocarditis, confusing AI classifiers 

trained on non-athletic populations. (Baba Ali et al., 2024; Smaranda et al., 2024)Furthermore, the low prevalence 

of acute myocarditis and specific cardiomyopathies in athletic cohorts creates a data scarcity problem. This leads 

to a lack of robust, athlete-specific training datasets, increasing the risk of overfitting and reducing the 

generalizability of AI tools to the unique physiology of the elite athlete. (Zhang et al., 2024) Consequently, current 

AI applications serve as decision-support tools rather than autonomous diagnostic systems. 
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5. Congenital Coronary Artery Anomalies 

Congenital coronary artery anomalies (CCAA) encompass abnormal origin, course, or departure from 

the typical anatomical configuration of the coronary arteries.(Lau et al., 2023) In athletes, CCAA represents 

one of the most deceptive causes of sudden cardiac death (SCD), as resting 12-lead ECGs are frequently normal. 

The most clinically relevant variants include an anomalous origin with an interarterial course (between the 

aorta and pulmonary artery) or an acutely angulated take-off. (Basso et al., 2000; Pérez-Pomares et al., 2016) 

Pathophysiological Mechanisms: Dynamic Ischemia 

Unlike atherosclerotic coronary disease, the pathophysiology of CCAA in athletes is functional and dynamic. 

The primary mechanism of ischemia is mechanical compression of the anomalous vessel during strenuous physical 

exertion. In the high-risk variant—Anomalous Coronary Artery from the Opposite Sinus (ACAOS) with an 

interarterial course—the vessel runs between the aorta and the pulmonary artery. (Gräni, 2018) 

During intense exercise, the expansion of the aortic root and pulmonary trunk can extrinsically compress 

the anomalous vessel. Furthermore, these anomalies often feature a slit-like ostium (an acute take-off angle) 

and a proximal intramural course (running within the aortic wall). As cardiac output and stroke volume increase, 

the aortic wall stretches, causing the slit-like orifice to collapse in a valve-like manner, severely compromising 

coronary blood flow precisely when myocardial oxygen demand is maximal. This acute mismatch leads to 

extensive myocardial ischemia and lethal ventricular arrhythmias. (Angelini, 2007; Basso et al., 2000) 
AI-Enhanced Imaging and Diagnostics 

Diagnostic evaluation relies primarily on anatomic imaging—most commonly coronary computed 

tomography angiography (CCTA) or invasive coronary angiography. (Neves et al., 2015) In this domain, 

Artificial Intelligence is emerging as a powerful adjunct. Deep learning algorithms applied to CCTA can now 

perform automated vessel segmentation and centerline extraction, significantly reducing the time required for 

post-processing and reconstruction. (Lau et al., 2023) 

AI models are being trained to automatically detect the origin of coronary arteries and classify their 

course (e.g., retroaortic vs. interarterial) with high accuracy. This "AI-reader" capability acts as a safety net, 

flagging potential anomalies in large datasets that might be overlooked by human readers focused on other 

findings (e.g., calcium scoring). (Lau et al., 2023) 

Clinical Implications and Diagnostic Limitations 

Despite these technological advances, significant limitations persist. The lack of large, athlete-specific 

cohorts with confirmed CCAA limits the training data for AI models, meaning current algorithms are largely 

derived from general clinical populations. (Lau et al., 2023) Moreover, while AI can identify anatomy, it 

currently struggles to predict the functional significance of a lesion (i.e., whether it causes ischemia), which 

still requires stress testing or fractional flow reserve (FFR) assessment. 

From a practical standpoint, in suspected "malignant" CCAA variants (e.g., the left coronary artery 

originating from the right sinus with an interarterial course), restriction of competitive activity is advised until 

a full diagnostic workup is completed. Decisions regarding return-to-play or surgical correction should be 

made in specialized centers, as AI tools currently serve only as anatomical detectors, not functional risk 

stratifiers. (Tso et al., 2020) 

 

6. Long QT Syndrome and Other Channelopathies 

Long QT syndrome (LQTS) and other cardiac channelopathies (e.g., Brugada syndrome, 

catecholaminergic polymorphic ventricular tachycardia [CPVT]) are inherited disorders of ion channel 

function leading to abnormal cardiac repolarization and an increased susceptibility to torsades de pointes and 

other life-threatening ventricular arrhythmias.(Schwartz et al., 2017) 

Pathophysiological Mechanisms: Ion Channels and Adrenergic Stress 

The pathophysiology of channelopathies is defined by the failure of transmembrane ion currents to 

maintain electrical stability, particularly under stress. In Long QT Syndrome (LQTS), mutations typically 

cause a "loss of function" in potassium channels or a "gain of function" in sodium channels. This prolongs the 

action potential duration (APD) and delays repolarization.(Wilde et al., 2022) 

In the athletic context, the mechanism of repolarization reserve is critical. Normally, during intense 

exercise, sympathetic stimulation (adrenergic surge) shortens the QT interval to match the rapid heart rate. In 

athletes with LQTS (particularly type 1, LQT1), the impaired potassium channels current prevents this 

necessary shortening. This maladaptation leads to a paradoxical prolongation of the QT interval during 

tachycardia, resulting in Early Afterdepolarizations (EADs). These EADs can trigger "R-on-T" phenomena, 
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precipitating polymorphic ventricular tachycardia (Torsades de Pointes) and sudden cardiac death. (Priori et 

al., 2013; Schwartz et al., 2017) 

Similarly, in CPVT, the pathology lies in intracellular calcium handling (mutations in RyR2). 

Adrenergic stress causes calcium leak from the sarcoplasmic reticulum, triggering delayed afterdepolarizations 

(DADs) exclusively during exertion, often in structurally normal hearts.(Priori et al., 2013) 

AI-Enhanced Diagnostics and Genotype Prediction 

Standard diagnostic assessment includes a 12-lead ECG with QTc measurement, yet up to 25–40% of 

genotype-positive patients may present with a normal resting QTc ("concealed LQTS"). (Schwartz et al., 2009) 

Here, Artificial Intelligence has shown transformative potential. 

Deep learning models applied to raw 12-lead ECG voltage data have demonstrated the ability to detect 

these concealed cases. A landmark study utilizing a convolutional neural network (CNN) achieved an AUC of 

0.90 in identifying patients with congenital LQTS, even when standard QTc measurements were within normal 

limits (<450 ms). Furthermore, AI models have shown the capacity to distinguish between specific genetic 

subtypes (e.g., LQT1 vs. LQT2) based on subtle T-wave morphological patterns that are difficult for human 

experts to quantify.(Bos et al., 2021; Jiang et al., 2024) These tools could theoretically serve as a scalable "pre-

genetic" screening method. 

Clinical Implications and Limitations 

Despite these capabilities, robust validation in large, independent athlete cohorts is needed before AI-

ECG can be adopted for routine pre-participation screening.(Drezner et al., 2017) The primary limitation is 

that most AI models are trained on clinical populations (often symptomatic patients from genetic registries), 

and their performance in the general athletic population—characterized by vagal-induced repolarization 

changes—remains less established.(Bos et al., 2021) 

Practically, in athletes with suspected LQTS, decisions regarding competitive participation should 

remain comprehensive, considering QTc duration, history of syncope, genotype, and treatment status (e.g., β-

blocker adherence). AI-ECG tools currently support early triage but should not replace evaluation by an 

electrophysiology specialist.(Johnson & Ackerman, 2013; Wilde et al., 2022) 

Detailed Characterization of Algorithm Performance in Key Studies 

The application of artificial intelligence in sports cardiology demonstrates tangible benefits across four 

primary clinical domains: hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular 

cardiomyopathy (ARVC), valvular heart disease, and channelopathies. 

1. Hypertrophic Cardiomyopathy (HCM) vs. Athlete’s Heart 

The primary challenge in this domain is differentiating physiological left ventricular hypertrophy (LVH) 

in athletes from mild phenotypes of HCM. 

● AI-ECG Analysis: Studies utilizing convolutional neural networks (CNNs) have demonstrated the 

superiority of AI over traditional interpretation. A model developed by Ko et al. (2020) based on 12-lead ECG 

analysis achieved an AUC of 0.96 in detecting HCM, identifying the disease even in patients with clinically 

normal ECGs according to standard criteria.(Ko et al., 2020) 

● Imaging (CMR and Echocardiography): In cardiac imaging, radiomic techniques (texture analysis) 

allow for the detection of interstitial fibrosis invisible to the human eye. Fahmy et al. (2022) demonstrated that 

deep learning algorithms applied to cardiac magnetic resonance (CMR) can automatically quantify late 

gadolinium enhancement (LGE) with high reproducibility, which is critical for sudden cardiac death risk 

stratification.(Fahmy et al., 2022) 

2. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 

The diagnosis of ARVC is complicated by the physiological enlargement of the right ventricle observed 

in endurance athletes. 

● AI-ECG: The model described by Haq et al. (2024) demonstrated the ability to differentiate patients 

with ARVC from healthy controls based on subtle depolarization and repolarization changes often overlooked 

by clinicians.(Haq et al., 2024) 

● CMR Automation: Research by Bourfiss et al. (2022, 2023) proved that automatic segmentation of 

the right ventricle and feature-tracking strain analysis by AI eliminate inter-observer variability, a major source 

of misdiagnosis when relying on the Padua Criteria.(Bourfiss et al., 2022, 2023) 

3. Valvular Heart Disease and Auscultation 

Recent advancements in digital auscultation and AI-ECG pave the way for cost-effective screening. 

● Digital Stethoscope: In a study by Zhou et al. (2025), an AI algorithm analyzing phonocardiogram 

(PCG) data was utilized to detect left-sided valvular heart disease. This study employed a machine learning 
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algorithm integrated with an electronic stethoscope ("AI stethoscope") on a cohort of 514 patients. In the 

testing phase, the model achieved an Area Under the Receiver Operating Characteristic curve (AU-ROC) of 

0.76 for the general detection of left-sided valvular heart disease. Detailed efficacy analysis demonstrated a 

sensitivity of 70.00% and specificity of 73.68% for identifying left-sided VHD. It is worth noting that higher 

sensitivities for specific defects, such as 93.2% for moderate-to-severe aortic stenosis, have been reported in 

related deep learning studies (e.g., Chorba et al., 2021)) referenced by the authors.(Chorba et al., 2021; Zhou 

et al., 2025) 

● ECG Prediction: Liang et al. (2025) demonstrated that AI can predict the presence of significant 

aortic or mitral regurgitation based solely on ECG waveforms, potentially serving as a triage tool prior to 

referral for echocardiography. (Liang et al., 2025) 

4. Channelopathies (Long QT Syndrome) 

Standard QTc measurements often fail in patients with "concealed" Long QT Syndrome (LQTS). 

● A study by Bos et al. (2021) from the Mayo Clinic showed that a neural network could identify 

patients with congenital LQTS even when their resting QTc was within normal limits (<450 ms), achieving an 

AUC of 0.90. This represents a breakthrough in detecting athletes at risk of sudden cardiac death (SCD) who 

would otherwise pass standard screening.(Bos et al., 2021) 

 
Table 1. Summary of diagnostic performance of selected AI models in cardiology  

(based on analyzed sources) 

 

Clinical Entity AI Modality 
Key Source 

Study 

Performance Metric 

(AUC / Sensitivity) 
Clinical Application 

HCM 12-lead AI-ECG 
(Ko et al., 

2020) 

 

AUC: 0.96 
Detection of HCM in 

"normal" ECGs 

Concealed 

LQTS 
12-lead AI-ECG 

(Bos et al., 

2021) 
AUC: 0.90 

Identification of LQTS 

genotype with normal 

QTc 

ARVC AI-ECG 
(Haq et al., 

2024) 

High precision (see 

text) 

Differentiation of 

ARVC from RV 

adaptation 

Valvular 

Disease 

Digital 

Stethoscope 

(Zhou et al., 

2025) 

 

Sensitivity: ~70% 

(overall), >90% 

(severe AS) 

Mass screening in sports 

Fibrosis (LGE) 
CMR Deep 

Learning 

(Fahmy et 

al., 2022) 

 

High correlation with 

experts 

Automated SCD risk 

assessment 

 

Discussion 

Bridging the Diagnostic "Gray Zone" The central challenge in sports cardiology remains the 

differentiation of physiological adaptation ("athlete's heart") from pathological remodeling. As highlighted by 

Henning (2024) and Lauschke & Maisch (2009), the overlap in structural features—such as left ventricular 

hypertrophy and chamber dilation—creates a diagnostic "gray zone" where traditional criteria often lack 

specificity. (Henning, 2024; Lauschke & Maisch, 2009) 

This review confirms that AI represents a paradigm shift in addressing this ambiguity. By analyzing 

non-linear relationships in data, AI models can identify microstructural and electrical signatures of disease that 

precede macroscopic remodeling. 

Enhanced Sensitivity via Deep Learning A recurring finding across clinical entities is the superior 

sensitivity of Deep Learning compared to standard clinical markers. 
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● In Electrocardiography (AI-ECG): The work by Bos et al. (2021) demonstrates that AI can detect 

"invisible" pathologies, such as concealed Long QT Syndrome or early-stage HCM, from a standard 12-lead 

ECG with AUCs exceeding 0.90. This suggests that AI extracts sub-threshold morphological data (e.g., subtle 

T-wave variances) that human readers miss.(Bos et al., 2021) 

● In Imaging (AI-CMR/Echo): AI eliminates inter-observer variability, a critical flaw in manual 

assessment. Automated segmentation and tissue characterization (e.g., LGE quantification or strain analysis) 

provide objective metrics for risk stratification in ARVC and HCM. (Bourfiss et al., 2023; Fahmy et al., 2022) 

The Promise of Multimodal Integration Current literature suggests that the future of screening lies in 

multimodal integration. Single-modality assessments are often insufficient; for instance, anatomic imaging in 

CCAA identifies the lesion but not the ischemia (Tso et al., 2020). 

Combining AI-ECG (electrical substrate), AI-Stethoscope (hemodynamic turbulence), and AI-Imaging 

(structural fibrosis) could theoretically construct a holistic "Digital Twin" of the athlete’s heart, offering a 

higher predictive value for Sudden Cardiac Death than any single test. (Palermi et al., 2023; Zhou et al., 2025). 

Key components include: 

● AI-ECG: analyzing the electrical substrate. 

● AI-Stethoscope: detecting hemodynamic turbulence. 

● AI-Imaging: quantifying structural fibrosis. 
Critical Limitations: The Data Gap Despite the high performance of AI in silico studies, clinical 

translation to sports medicine is hindered by significant data biases. 

1. Generalizability: Most high-performing algorithms (e.g., for HCM or LQTS) were trained on general 

clinical populations or disease registries, not on elite athletes (Bellfield et al., 2022). The unique vagal tone 

and repolarization patterns of athletes may lead to false positives in models not calibrated for this specific 

physiology. 

2. Scarcity of Rare Conditions: Diseases like ARVC and Congenital Coronary Artery Anomalies 

(CCAA) are rare, preventing the aggregation of the massive datasets required to train robust Deep Learning 

models without overfitting (Aljehani et al., 2023; Lau et al., 2023). 

3. "Black Box" Nature: The lack of explainability in neural networks remains a barrier. In the context 

of disqualifying a young athlete from competition, clinicians require interpretable features rather than opaque 

probability scores. (Smaranda et al., 2024). 

Ethical and Legal Implications of AI in Sports Qualification 

The deployment of AI in pre-participation screening introduces complex bioethical dilemmas. The 

primary concern is the potential for unwarranted disqualification ("false positives"). Algorithms trained on 

general populations may misinterpret athlete-specific adaptations—such as pronounced sinus bradycardia or 

early repolarization—as pathological, leading to unnecessary exclusion from competition. This carries 

profound consequences for a young athlete's career, scholarship opportunities, and mental health. 

Conversely, false-negative results in high-risk conditions like ARVC could lead to preventable sudden 

cardiac death, raising significant legal questions regarding liability. If an AI tool clears an athlete who 

subsequently suffers a cardiac arrest, does liability rest with the physician, the algorithm developer, or the 

sports organization? Current consensus suggests that AI must remain a "Clinical Decision Support System" 

(CDSS) rather than an autonomous gatekeeper. The final decision on return-to-play must involve shared 

decision-making between the expert cardiologist and the athlete, utilizing AI as an adjunctive data point rather 

than a definitive verdict. 

 

Conclusions 

1. Transformative Screening Potential: Artificial Intelligence, particularly AI-ECG, has demonstrated 

the ability to detect occult cardiovascular diseases (such as concealed LQTS and early HCM) with significantly 

higher sensitivity than traditional manual interpretation. This positions AI as a powerful, cost-effective "triage" 

tool for mass pre-participation screening. 

2. Objectivity in Imaging: AI-enhanced imaging (CMR and Echocardiography) provides highly 

reproducible, automated quantification of myocardial strain, fibrosis, and wall thickness, reducing the 

subjectivity inherent in the assessment of the "athlete's heart." 

3. Pathophysiological Insight: AI models can identify disease-specific patterns—such as electrical 

remodeling in ARVC or micro-architectural disarray in HCM—that reflect the underlying pathophysiology 

(e.g., desmosomal disruption or sarcomeric mutation) before overt structural damage occurs. 
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4. Necessity for Athlete-Specific Validation: To ensure safety and prevent unwarranted 

disqualifications, AI models must be validated on large, diverse cohorts of elite athletes. Current models 

trained on general populations risk misinterpreting physiological adaptations (e.g., vagal bradycardia) as 

pathological. 

5. Decision Support, Not Replacement: At the current stage of technological maturity, AI should serve 

as a Clinical Decision Support System (CDSS) for the sports cardiologist, facilitating early detection and 

standardized risk stratification, but not replacing the comprehensive clinical judgment required for return-to-

play decisions. 
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