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ABSTRACT

Purpose: The primary objective of this review is to evaluate the efficacy, clinical applications, and current limitations of
Artificial Intelligence (Al) and Machine Learning (ML) in diagnosing cardiovascular diseases (CVD) among competitive
athletes. Specifically, this study addresses the critical diagnostic challenge of differentiating benign physiological adaptations
known as "athlete's heart" from potentially lethal pathologies, including cardiomyopathies and channelopathies, to prevent
sudden cardiac death.

Materials and Methods: A systematic literature search was conducted across PubMed, Scopus, and Web of Science
databases covering the period from 2000 to 2025. The review identified and synthesized 48 key studies utilizing Al
algorithms—specifically deep learning applied to electrocardiography (AI-ECG) and automated imaging analysis
(Echocardiography, CMR )}—for the detection of Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Right Ventricular
Cardiomyopathy (ARVC), valvular anomalies, and inherited channelopathies. Diagnostic performance metrics were
analyzed to compare Al methodologies against standard clinical criteria.

Results: Deep learning models applied to ECG demonstrate superior sensitivity (>90%) in detecting occult
cardiomyopathies compared to traditional methods , while Al-enhanced imaging significantly improves the reproducibility
of tissue characterization. Al algorithms, such as those analyzing phonocardiograms, show efficacy comparable to
echocardiography in detecting valvular heart disease.

Conclusions: Al represents a paradigm shift in sports cardiology, offering potential for scalable and cost-effective screening.
However, widespread clinical implementation is currently hindered by the "black box" nature of algorithms and the scarcity
of large, athlete-specific training datasets. Future deployment requires explainable AI models validated on diverse athletic
cohorts.
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Introduction

Cardiovascular diseases remain one of the leading causes of morbidity and mortality in young
competitive athletes, with conditions such as hypertrophic cardiomyopathy (HCM), arrhythmogenic right
ventricular cardiomyopathy (ARVC), valvular heart diseases, congenital coronary artery anomalies (CCAA),
myocarditis, and inherited channelopathies representing the most frequent substrates of exercise-related
sudden cardiac death. (Bhatia et al., 2022; Campuzano et al., 2012; Cotet et al., 2025; Gréni, 2018; Schwartz
et al., 2017; Ullal et al., 2016)Despite major advances in sports cardiology, the early identification of these
disorders continues to pose substantial challenges. Physiological cardiac remodeling induced by intensive
training—characterized by chamber dilation, augmented left ventricular mass, increased vagal tone, and
hemodynamic adaptations—often mimics or obscures pathological findings.(Augustine & Howard, 2018;
Henning, 2024; Lauschke & Maisch, 2009; Palermi et al., 2023) As a result, traditional diagnostic tools such
as electrocardiography (ECG) and echocardiography may have limited specificity and sensitivity in
differentiating benign adaptive features from early or subtle manifestations of cardiovascular
disease.(Cavarretta et al., 2024; D’ Ascenzi et al., 2021)

Cardiac magnetic resonance (CMR), advanced echocardiographic techniques, and genetic testing have
significantly improved diagnostic accuracy; however, their routine use in large athletic populations is
constrained by cost, accessibility, and the need for specialist interpretation.(D’Ascenzi et al., 2021) Moreover,
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several high-risk cardiovascular conditions—such as concealed long QT syndrome, early-stage ARVC, or
congenital coronary anomalies—may remain undetected despite comprehensive evaluation.(Bos et al., 2021)

In recent years, artificial intelligence (Al) has emerged as a transformative tool with the potential to
enhance cardiovascular screening and diagnostics.(Smaranda et al., 2024) Deep learning algorithms applied to
ECG, cardiac imaging, auscultation, and wearable device data have demonstrated the ability to detect subtle
morphological, electrical, or hemodynamic patterns that are often imperceptible to clinicians.(Zhou et al., 2025)
Early studies suggest that Al-enhanced ECG can identify HCM even when the resting ECG appears normal,
distinguish physiological from pathological hypertrophy, and improve detection of inherited arrhythmia
syndromes.(Croon et al., 2025; Jiang et al., 2024; Ko et al., 2020) Similarly, Al-powered image analysis in
echocardiography and CMR has shown promise in automated quantification of ventricular function,
myocardial deformation, scar burden, and valvular abnormalities—yielding highly reproducible measurements
with reduced inter-observer variability.(Bourfiss et al., 2023; Duffy et al., 2022; Fahmy et al., 2022; Monopoli
etal., 2025)

Despite these advances, significant limitations persist. Many Al models are developed using datasets
derived from general clinical populations, which may not accurately represent the unique physiological
characteristics of trained athletes.(Bellfield et al., 2022) Furthermore, rarer conditions—such as congenital
valvular defects or ARVC—Iack large, well-annotated datasets suitable for robust training and validation of
machine learning systems. As a result, the generalizability of Al-based tools to athletic cohorts remains
incompletely established.(Aljehani et al., 2023; Jone et al., 2022; Kiibler et al., 2021)

This article provides a comprehensive overview of the current and emerging role of artificial intelligence
in the diagnosis of cardiovascular diseases relevant to competitive athletes. It examines the capabilities and
limitations of Al-based methods across key clinical entities—including hypertrophic cardiomyopathy, ARVC,
congenital valvular heart disease, congenital coronary anomalies, myocarditis, and inherited
channelopathies—while highlighting the diagnostic challenges inherent to the athletic population. Particular
emphasis is placed on multimodal Al approaches that integrate ECG, imaging, and physiological signals, as
well as on the prerequisites for safe and effective clinical implementation in sports medicine.(Zhou et al., 2025)

Methodology

To compile this comprehensive overview, a systematic literature review was conducted. The PubMed,
Scopus, and Web of Science databases were searched covering the period from January 2000 to February 2025.
The search strategy employed a combination of Medical Subject Headings (MeSH) and text keywords,
including: “Cardiology”, “Athlete’s Heart”, “Artificial Intelligence”, “Sudden Cardiac Death”,
“Cardiovascular Screening”.

1. Investigated the pathophysiology of exercise-related cardiac remodeling and its differentiation from
pathology (e.g., HCM, ARVC, DCM).

2. Evaluated the performance of Al algorithms (CNNs, deep learning) applied to ECG,
Echocardiography, CMR, or digital auscultation.

3. Addressed specific diagnostic challenges in athletic populations, such as the "gray zone" of
hypertrophy or repolarization anomalies.

Studies were selected based on their methodological rigor and relevance to the specific clinical entities
discussed (HCM, ARVC, CCAA, Valvular Disease, Myocarditis, and Channelopathies). A total of 48 key
references were synthesized to assess the diagnostic accuracy (sensitivity, specificity, AUC) and clinical
limitations of current Al tools.

Results

1. Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) in athletes represents one of the most significant challenges in
modern sports medicine. This condition, characterized by abnormal thickening of the myocardial walls, is the
most common cause of sudden cardiac death in young, physically active individuals.(Malhotra & Sharma,
2017; Ullal et al., 2016) Early identification of HCM is crucial; however, in athletes, conventional diagnostic
methods are frequently insufficient because the physiological adaptations induced by intensive training may
resemble the disease phenotype.(Henning, 2024; Kiibler et al., 2021; Lauschke & Maisch, 2009) In recent
years, interest in artificial intelligence (Al) techniques has been steadily increasing, as they hold the potential
to facilitate the differentiation of hypertrophic cardiomyopathy from the so-called “athlete’s heart,” thereby
improving the diagnostic process and enhancing athlete safety.(Siontis et al., 2024)

e-ISSN: 2544-9435 3


https://www.zotero.org/google-docs/?90PeHX
https://www.zotero.org/google-docs/?TgG4bF
https://www.zotero.org/google-docs/?9caUKX
https://www.zotero.org/google-docs/?TsjaCr
https://www.zotero.org/google-docs/?6aPZ9r
https://www.zotero.org/google-docs/?6aPZ9r
https://www.zotero.org/google-docs/?1Vq4ru
https://www.zotero.org/google-docs/?owJ0jq
https://www.zotero.org/google-docs/?o9Yxa6
https://www.zotero.org/google-docs/?9OwJFY
https://www.zotero.org/google-docs/?9OwJFY
https://www.zotero.org/google-docs/?SzVb8a
https://www.zotero.org/google-docs/?uwi521

4(48) (2025): International Journal of Innovative Technologies in Social Science

Pathophysiological Mechanisms

From a pathophysiological perspective, HCM is fundamentally distinct from the hemodynamic
adaptations observed in the "athlete's heart." It is primarily a genetic disorder of the cardiac sarcomere, most
commonly inherited in an autosomal dominant pattern caused by mutations in genes encoding contractile
proteins, such as -myosin heavy chain (MYH?7) and cardiac myosin-binding protein C (MYBPC3).(Malhotra
& Sharma, 2017)

The critical histological hallmark that differentiates HCM from physiological remodeling is myocyte
disarray—a chaotic architectural arrangement of cardiomyocytes—accompanied by increased interstitial
fibrosis and intramural coronary arteriole dysplasia (small vessel disease). (Henning, 2024; Lauschke &
Maisch, 2009) While athletic training induces a harmonic, reversible increase in myocyte size with preserved
cellular alignment, HCM presents with structural disorganization that disrupts normal electrical propagation.

This combination of cellular disarray and replacement fibrosis creates a heterogeneous myocardial
substrate. This substrate facilitates re-entrant electrical circuits, thereby predisposing individuals to malignant
ventricular tachyarrhythmias, which are the primary mechanism of sudden cardiac death in these athletes.
(Bhatia et al., 2022; Fahmy et al., 2022) Anatomically, this often manifests as asymmetric hypertrophy
(predominantly affecting the interventricular septum), which may lead to dynamic left ventricular outflow tract
(LVOT) obstruction and diastolic dysfunction—features rarely observed in pure physiological hypertrophy.
(Augustine & Howard, 2018)

HCM vs. Athlete’s Heart — Diagnostic Challenges

The athlete’s heart undergoes several physiological adaptations in response to systematic training,
including mild left ventricular hypertrophy, chamber enlargement, and resting bradycardia. Although
physiological, these changes may mimic the appearance of HCM, particularly in the early stages of the disease
or in cases of mild hypertrophy. Distinguishing physiological adaptation from pathology remains a major
challenge.(Augustine & Howard, 2018; Lauschke & Maisch, 2009) Traditional diagnostic tests such as ECG
and echocardiography do not always provide conclusive information—especially in endurance athletes, in
whom myocardial wall thickness may reach borderline values.(Cavarretta et al., 2024; Henning, 2024)

Importance of Early Diagnosis and Associated Risks in Athletes

In some athletes, the first manifestation of HCM may be sudden cardiac death, typically during intense
physical exertion.(Bhatia et al., 2022) For this reason, sports federations worldwide recommend routine
screening that includes ECG and echocardiography.(D’Ascenzi et al., 2021). Difficulties occur when it is
challenging to differentiate physiological adaptation from structural pathology, which may require advanced
diagnostic tools such as cardiac magnetic resonance imaging (CMR) or genetic testing. These are precisely the
situations in which artificial intelligence is assuming an increasingly important role.(Baba Ali et al., 2024;
Lauschke & Maisch, 2009)

Al in HCM Diagnostics — New Opportunities

Artificial intelligence—particularly deep learning techniques—has been transforming cardiac diagnostics in
recent years. One of the first areas in which Al demonstrated notable effectiveness is ECG analysis. AI-ECG
algorithms trained on hundreds of thousands of recordings can detect subtle patterns imperceptible to the human
eye. Studies from institutions such as the Mayo Clinic have shown that Al can identify HCM with very high
sensitivity and specificity, even when a standard ECG appears normal.(Ko et al., 2020)

Another rapidly developing area is Al-based interpretation of cardiac imaging. Deep learning algorithms
used in echocardiography and CMR can precisely assess wall thickness, chamber volumes, myocardial motion,
and detect scarring or fibrosis.(Fahmy et al., 2022) In athletes, Al can assist in differentiating the uniform,
symmetrical hypertrophy typical of the athlete’s heart from the asymmetric hypertrophy characteristic of HCM.
Importantly, these algorithms provide highly reproducible analyses, reducing inter-observer
variability.(Bellfield et al., 2022; Duffy et al., 2022; Yu et al., 2022)

Mobile Diagnostics and the Future of Screening

With the advancement of portable medical technologies such as smartwatches and mobile
electrocardiographs, ECG recordings can now be obtained during routine training activities. Integrating these data
with Al algorithms may enable continuous monitoring and early detection of concerning abnormalities. Ongoing
clinical studies are investigating whether Al analyzing single-lead ECG recordings (e.g., from a smartwatch) can
detect HCM and differentiate it from training-related physiological adaptations.(Croon et al., 2025)
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2. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of the myocardium
characterized by fibrofatty replacement of cardiac muscle, impaired right ventricular wall motion, and a
propensity for malignant arrhythmias. (Campuzano et al., 2012) In athletes, the diagnosis of ARVC is
particularly challenging, as physiological adaptations to intensive training—such as right ventricular cavity
enlargement or repolarization changes—may mimic pathological features, creating a diagnostic “grey
zone.”(Campuzano et al., 2012) In this context, Al-based technologies capable of analyzing both ECG signals
and cardiac imaging (CMR, echocardiography) may offer additional tools for early disease detection and risk
stratification.

Pathophysiological Mechanisms and the Impact of Exercise

From a pathophysiological standpoint, ARVC is predominantly a disease of the desmosome, a protein
complex responsible for mechanical cell-to-cell adhesion. In the majority of cases, the condition is driven by
mutations in genes encoding desmosomal proteins, such as plakophilin-2 (PKP2) or desmoglein-2 (DSG2),
which compromise the structural integrity of the intercalated discs.(Corrado et al., 2017)

The athletic population is uniquely vulnerable due to the interaction between this genetic substrate and
mechanical stress. Intensive physical exertion increases right ventricular wall stress, which disrupts these
fragile desmosomal connections, triggering myocyte necrosis and an inflammatory response.(Campuzano et
al., 2012) This process leads to the hallmark fibrofatty replacement of the myocardium, which creates a
substrate for re-entrant ventricular arrhythmias. Crucially, molecular studies suggest that "electrical
remodeling"—characterized by the downregulation of gap junction proteins (Connexin 43)—often precedes
macroscopic structural damage.(Haq et al., 2024) This dissociation explains why electrical instability may
manifest on the ECG (and potentially be detected by Al) before overt structural defects are visible on standard
cardiac imaging.

Al-Enhanced Electrocardiography as an Emerging Diagnostic Modality for ARVC

One of the earliest and most significant examples of the translational application of artificial intelligence
in ARVC diagnostics is the study describing the “Al-enhanced ECG”—a deep-learning model capable of
detecting ARVC-related features from a standard 12-lead electrocardiogram. Haq et al. demonstrated that a
neural network trained on datasets of patients with confirmed ARVC can distinguish affected individuals from
controls with good diagnostic performance and may serve as a rule-out biomarker in clinical populations. This
study suggests that AI-ECG algorithms are capable of identifying subtle morphological and temporal patterns
that are either imperceptible or inconsistently recognized by human readers.(Haq et al., 2024)

Machine Learning—Enhanced CMR for Automated Assessment of Right Ventricular Dysfunction
in ARVC

Cardiac magnetic resonance imaging (CMR) remains the gold standard for the assessment of right
ventricular morphology and function, as well as for the identification of tissue characteristics in ARVC. In this
field, studies have increasingly applied machine learning techniques for the automated quantification of
myocardial motion, regional wall motion abnormalities, and strain tracking. For example, research on deep
learning—based automated strain analysis has demonstrated significant differences in peak strain parameters
between patients with ARVC and healthy controls, suggesting the potential for automated detection of
pathological right ventricular dyskinesia. Such algorithms enhance the objectivity of regional wall motion
assessment—an aspect that is critical for the diagnosis of ARVC.(Bourfiss et al., 2022, 2023)

Limitations in Data Availability for AI-Based ARVC Research in Athletes

It should be emphasized, however, that current knowledge has limitations. ARVC is a relatively rare
disease, which hampers the collection of large, balanced training datasets—particularly those including
athletes exhibiting physiological right ventricular remodeling.(Aljehani et al., 2023) Nevertheless, it is
important to acknowledge the limitations of the current evidence. ARVC is a relatively rare condition, which
complicates the assembly of large, well-balanced training datasets—especially those incorporating athletes
with physiological right ventricular remodeling. (Kiibler et al., 2021)
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3. Congenital Valvular Heart Disease

Congenital valvular heart disease (CVHD) constitutes a significant portion of developmental cardiac
disorders. Despite advances in prenatal and pediatric diagnostics, many valvular defects remain undiagnosed
or overlooked—particularly in adults or athletes whose hearts have undergone hemodynamic adaptations due
to intensive physical activity.(Viera et al., 2024) In this context, artificial intelligence (Al)-based technologies
provide promising tools that may facilitate early detection and management of CVHD.

Pathophysiological Mechanisms and Hemodynamic Impact

The pathophysiology of CVHD in athletes is defined by the interaction between altered valve mechanics
and the high-flow hemodynamic state induced by exercise. The most common entity is the bicuspid aortic
valve (BAV), affecting 1-2% of the population. In BAV, the abnormal leaflet architecture generates turbulent
blood flow and eccentric shear stress on the aortic wall, predisposing the athlete not only to valvular stenosis
or regurgitation but also to aortopathy and potential dissection. (Jone et al., 2022; Viera et al., 2024)Under
resting conditions, mild valvular defects may remain hemodynamically silent. However, during intense
physical exertion, cardiac output can increase five-fold (>30 L/min). In the presence of valvular stenosis (e.g.,
aortic or pulmonary), this increased flow necessitates supra-physiological intraventricular pressures to
maintain perfusion, leading to concentric hypertrophy and potential subendocardial ischemia.(Palermi et al.,
2023) Conversely, in regurgitant lesions (e.g., mitral valve prolapse), the "volume load" of exercise compounds
the regurgitant volume, accelerating ventricular dilation and increasing wall tension. Over time, these
mechanical stressors can trigger maladaptive remodeling, fibrosis, and electrical instability, distinguishing the
pathological substrate from benign athletic adaptation. (Jone et al., 2022)

Al-Enhanced Auscultation for the Detection of Left-Sided Valvular Heart Disease

Recent years have provided substantial evidence that Al can effectively support the diagnosis of valvular
heart disease, both acquired and congenital. In a groundbreaking study published in 2025, researchers
employed an “Al stethoscope” (an electronic stethoscope combined with a machine learning algorithm) which,
after collecting data from 514 patients, was able to automatically identify left-sided valvular heart disease. In
the testing phase, the algorithm achieved reasonable sensitivity and specificity (sensitivity ~70%, specificity
~74%, AU-ROC ~0.76), suggesting that a simple, rapid, and cost-effective method—analogous to
auscultation—could serve as a screening tool.(Zhou et al., 2025)

Deep Learning in ECG and Multimodal Imaging

Another promising direction involves systems based on conventional electrocardiography (ECG). A
2025 study demonstrated that AI-ECG models could predict the risk of developing clinically significant
valvular regurgitation (mitral, aortic, or tricuspid) by leveraging large datasets of paired ECG and
echocardiography recordings, encompassing nearly one million ECG-echo pairs. This approach opens the
possibility that, in athletic populations where echocardiography or CMR is not routinely performed, AI-ECG
could serve as a cost-effective screening tool.(Liang et al., 2025; Lin et al., 2024)

In the realm of cardiac imaging, Al has also demonstrated substantial potential. Recent studies indicate
that Al algorithms can automatically segment valvular structures, analyze their anatomy and function, and
assist in classifying patients according to their risk of disease progression. This represents a significant advance,
as the assessment of valvular defects is becoming less dependent on operator experience and more objective
and reproducible.(Huang et al., 2023; Monopoli et al., 2025)

Moreover, research on digital auscultation and heart sound analysis using deep learning shows that Al can
match or even surpass the performance of clinicians. In the referenced study, the algorithm detected moderate-to-
severe aortic stenosis with a sensitivity of 93.2%, whereas the expert annotators demonstrated sensitivities ranging
from 82.5% to 97.5% depending on the reader. In the case of mitral regurgitation, the algorithm achieved a
sensitivity of 66.2%, compared with 58.6% to 82.8% for the clinicians.(Chorba et al., 2021)

Diagnostic Limitations in the Athletic Population

Despite promising results, the application of Al to valvular heart disease—particularly in specialized
populations such as athletes—presents important challenges and limitations. First, most available studies focus
on acquired valvular disorders (e.g., degenerative regurgitation, calcification) rather than congenital defects,
meaning that algorithms may not be optimized to detect subtle developmental anomalies characteristic of
CVHD.(Jone et al., 2022)

Second, logistical and epidemiological challenges exist: congenital valvular defects are relatively rare
in adult populations, making it difficult to assemble large, well-annotated training datasets that include
physically active individuals or athletes. Without appropriately diverse data, machine learning models are
prone to overfitting or limited generalizability.(Jone et al., 2022)
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Finally, cardiac adaptations in athletes (remodeling, chamber enlargement, hemodynamic changes) may
mask valvular abnormalities or produce variable echocardiographic appearances, complicating accurate
classification. In such cases, a multimodal approach—integrating AI-ECG, Al-auscultation, and
Al-echo/CMR—may prove crucial.(Palermi et al., 2023)

4. Cardiomyopathies and Myocarditis

Cardiomyopathies—including  hypertrophic = cardiomyopathy, dilated cardiomyopathy, and
arrhythmogenic right ventricular cardiomyopathy—and myocarditis are major causes of sudden cardiac death
and exercise restrictions in young and middle-aged athletes. (Cotet et al., 2025)Their diagnostic workup relies
on a combination of clinical history, electrocardiography, echocardiography, and advanced cardiac imaging,
particularly cardiac magnetic resonance (CMR), while indeterminate cases may require histopathological
confirmation through endomyocardial biopsy.(Cotet et al., 2025; Rapezzi et al., 2013)

Pathophysiological Mechanisms: Inflammation vs. Adaptation

The pathophysiology of myocarditis and non-hypertrophic cardiomyopathies differs fundamentally
from the physiologic hypertrophy of the athlete's heart. Myocarditis is primarily an inflammatory disease of
the myocardium, typically triggered by viral infection (e.g., Coxsackievirus, Parvovirus B19, or SARS-CoV-
2). The disease progresses through three phases: acute viral injury, immunological activation, and—in some
cases—chronic fibrosis.(Tschope et al., 2021)

In athletes, this process is critically dangerous because intense physical exertion during the acute phase
can exacerbate viral replication and enhance the inflammatory response, leading to extensive myocyte necrosis
and accelerated arrhythmogenesis. This results in myocardial edema and, subsequently, replacement fibrosis
(scarring), which serves as a permanent substrate for re-entrant ventricular tachycardia.(Cotet et al., 2025;
Lajczak & Jozwik, 2024)

In contrast, Dilated Cardiomyopathy (DCM) is often caused by cytoskeletal or sarcomeric gene
mutations (e.g., TTN, LMNA) leading to cardiomyocyte elongation, wall thinning ("eccentric hypertrophy"),
and depressed systolic function. Unlike the reversible chamber dilation seen in endurance athletes (where
ejection fraction remains normal or slightly lower at rest but recruits normally during exercise), pathological
DCM is characterized by reduced contractile reserve and interstitial fibrosis.(Rapezzi et al., 2013)

Al-Enhanced Multimodal Diagnostics

The Role of Al in CMR and Tissue Characterization Cardiac magnetic resonance (CMR) remains the
gold standard for non-invasive tissue characterization, utilizing the updated Lake Louise Criteria to detect
myocardial edema (T2-weighted imaging) and fibrosis (Late Gadolinium Enhancement, LGE). Artificial
intelligence has significantly enhanced this modality. Deep learning algorithms are now capable of automating
the segmentation of the myocardium and quantifying LGE burden with precision that matches or exceeds
human experts. For instance, Al models described by Zhang et al. (2024) and Wang et al. (2024) automate the
measurement of T1 and T2 mapping values, allowing for the objective detection of diffuse fibrosis or subtle
edema that might be missed by visual inspection alone. This "AI-CMR" approach is particularly valuable in
distinguishing the physiological T1 mapping values of a trained athlete from the pathological elevation seen
in early diffuse fibrosis. (Shyam-Sundar et al., 2024; Wang et al., 2024; Zhang et al., 2024)

Multimodal Integration (ECG + Imaging) Beyond imaging, Al systems have demonstrated
capabilities in analyzing 12-lead ECG signals (AI-ECG) to detect subtle repolarization abnormalities
associated with early cardiomyopathy. Multimodal models integrating AI-ECG, Al-auscultation, and Al-
echo/CMR theoretically enhance the accuracy of differentiating physiological athletic adaptation from
pathology by cross-referencing electrical anomalies with structural data. (Lajczak & Jozwik, 2024)

Diagnostic Limitations in Athletic Cohorts

Despite these technological strides, real-world implementation remains constrained by several factors.
First, the physiological cardiac adaptations to training—such as chamber enlargement and increased vagal tone—
can mimic the "dilated" phenotype of DCM or the inflammatory changes of myocarditis, confusing Al classifiers
trained on non-athletic populations. (Baba Ali et al., 2024; Smaranda et al., 2024)Furthermore, the low prevalence
of acute myocarditis and specific cardiomyopathies in athletic cohorts creates a data scarcity problem. This leads
to a lack of robust, athlete-specific training datasets, increasing the risk of overfitting and reducing the
generalizability of Al tools to the unique physiology of the elite athlete. (Zhang et al., 2024) Consequently, current
Al applications serve as decision-support tools rather than autonomous diagnostic systems.
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5. Congenital Coronary Artery Anomalies

Congenital coronary artery anomalies (CCAA) encompass abnormal origin, course, or departure from
the typical anatomical configuration of the coronary arteries.(Lau et al., 2023) In athletes, CCAA represents
one of the most deceptive causes of sudden cardiac death (SCD), as resting 12-lead ECGs are frequently normal.
The most clinically relevant variants include an anomalous origin with an interarterial course (between the
aorta and pulmonary artery) or an acutely angulated take-off. (Basso et al., 2000; Pérez-Pomares et al., 2016)

Pathophysiological Mechanisms: Dynamic Ischemia

Unlike atherosclerotic coronary disease, the pathophysiology of CCAA in athletes is functional and dynamic.
The primary mechanism of ischemia is mechanical compression of the anomalous vessel during strenuous physical
exertion. In the high-risk variant—Anomalous Coronary Artery from the Opposite Sinus (ACAOS) with an
interarterial course—the vessel runs between the aorta and the pulmonary artery. (Gréni, 2018)

During intense exercise, the expansion of the aortic root and pulmonary trunk can extrinsically compress
the anomalous vessel. Furthermore, these anomalies often feature a slit-like ostium (an acute take-off angle)
and a proximal intramural course (running within the aortic wall). As cardiac output and stroke volume increase,
the aortic wall stretches, causing the slit-like orifice to collapse in a valve-like manner, severely compromising
coronary blood flow precisely when myocardial oxygen demand is maximal. This acute mismatch leads to
extensive myocardial ischemia and lethal ventricular arrhythmias. (Angelini, 2007; Basso et al., 2000)

Al-Enhanced Imaging and Diagnostics

Diagnostic evaluation relies primarily on anatomic imaging—most commonly coronary computed
tomography angiography (CCTA) or invasive coronary angiography. (Neves et al., 2015) In this domain,
Artificial Intelligence is emerging as a powerful adjunct. Deep learning algorithms applied to CCTA can now
perform automated vessel segmentation and centerline extraction, significantly reducing the time required for
post-processing and reconstruction. (Lau et al., 2023)

Al models are being trained to automatically detect the origin of coronary arteries and classify their
course (e.g., retroaortic vs. interarterial) with high accuracy. This "Al-reader" capability acts as a safety net,
flagging potential anomalies in large datasets that might be overlooked by human readers focused on other
findings (e.g., calcium scoring). (Lau et al., 2023)

Clinical Implications and Diagnostic Limitations

Despite these technological advances, significant limitations persist. The lack of large, athlete-specific
cohorts with confirmed CCAA limits the training data for Al models, meaning current algorithms are largely
derived from general clinical populations. (Lau et al., 2023) Moreover, while Al can identify anatomy, it
currently struggles to predict the functional significance of a lesion (i.e., whether it causes ischemia), which
still requires stress testing or fractional flow reserve (FFR) assessment.

From a practical standpoint, in suspected "malignant" CCAA variants (e.g., the left coronary artery
originating from the right sinus with an interarterial course), restriction of competitive activity is advised until
a full diagnostic workup is completed. Decisions regarding return-to-play or surgical correction should be
made in specialized centers, as Al tools currently serve only as anatomical detectors, not functional risk
stratifiers. (Tso et al., 2020)

6. Long QT Syndrome and Other Channelopathies

Long QT syndrome (LQTS) and other cardiac channelopathies (e.g., Brugada syndrome,
catecholaminergic polymorphic ventricular tachycardia [CPVT]) are inherited disorders of ion channel
function leading to abnormal cardiac repolarization and an increased susceptibility to torsades de pointes and
other life-threatening ventricular arrhythmias.(Schwartz et al., 2017)

Pathophysiological Mechanisms: Ion Channels and Adrenergic Stress

The pathophysiology of channelopathies is defined by the failure of transmembrane ion currents to
maintain electrical stability, particularly under stress. In Long QT Syndrome (LQTS), mutations typically
cause a "loss of function" in potassium channels or a "gain of function" in sodium channels. This prolongs the
action potential duration (APD) and delays repolarization.(Wilde et al., 2022)

In the athletic context, the mechanism of repolarization reserve is critical. Normally, during intense
exercise, sympathetic stimulation (adrenergic surge) shortens the QT interval to match the rapid heart rate. In
athletes with LQTS (particularly type 1, LQT1), the impaired potassium channels current prevents this
necessary shortening. This maladaptation leads to a paradoxical prolongation of the QT interval during
tachycardia, resulting in Early Afterdepolarizations (EADs). These EADs can trigger "R-on-T" phenomena,
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precipitating polymorphic ventricular tachycardia (Torsades de Pointes) and sudden cardiac death. (Priori et
al., 2013; Schwartz et al., 2017)

Similarly, in CPVT, the pathology lies in intracellular calcium handling (mutations in RyR2).
Adrenergic stress causes calcium leak from the sarcoplasmic reticulum, triggering delayed afterdepolarizations
(DADs) exclusively during exertion, often in structurally normal hearts.(Priori et al., 2013)

Al-Enhanced Diagnostics and Genotype Prediction

Standard diagnostic assessment includes a 12-lead ECG with QTc measurement, yet up to 25-40% of
genotype-positive patients may present with a normal resting QTc ("concealed LQTS"). (Schwartz et al., 2009)
Here, Artificial Intelligence has shown transformative potential.

Deep learning models applied to raw 12-lead ECG voltage data have demonstrated the ability to detect
these concealed cases. A landmark study utilizing a convolutional neural network (CNN) achieved an AUC of
0.90 in identifying patients with congenital LQTS, even when standard QTc measurements were within normal
limits (<450 ms). Furthermore, Al models have shown the capacity to distinguish between specific genetic
subtypes (e.g., LQT1 vs. LQT2) based on subtle T-wave morphological patterns that are difficult for human
experts to quantify.(Bos et al., 2021; Jiang et al., 2024) These tools could theoretically serve as a scalable "pre-
genetic" screening method.

Clinical Implications and Limitations

Despite these capabilities, robust validation in large, independent athlete cohorts is needed before Al-
ECG can be adopted for routine pre-participation screening.(Drezner et al., 2017) The primary limitation is
that most Al models are trained on clinical populations (often symptomatic patients from genetic registries),
and their performance in the general athletic population—characterized by vagal-induced repolarization
changes—remains less established.(Bos et al., 2021)

Practically, in athletes with suspected LQTS, decisions regarding competitive participation should
remain comprehensive, considering QTc duration, history of syncope, genotype, and treatment status (e.g., B-
blocker adherence). AI-ECG tools currently support early triage but should not replace evaluation by an
electrophysiology specialist.(Johnson & Ackerman, 2013; Wilde et al., 2022)

Detailed Characterization of Algorithm Performance in Key Studies

The application of artificial intelligence in sports cardiology demonstrates tangible benefits across four
primary clinical domains: hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular
cardiomyopathy (ARVC), valvular heart disease, and channelopathies.

1. Hypertrophic Cardiomyopathy (HCM) vs. Athlete’s Heart

The primary challenge in this domain is differentiating physiological left ventricular hypertrophy (LVH)
in athletes from mild phenotypes of HCM.

e AI-ECG Analysis: Studies utilizing convolutional neural networks (CNNs) have demonstrated the
superiority of Al over traditional interpretation. A model developed by Ko et al. (2020) based on 12-lead ECG
analysis achieved an AUC of 0.96 in detecting HCM, identifying the disease even in patients with clinically
normal ECGs according to standard criteria.(Ko et al., 2020)

e Imaging (CMR and Echocardiography): In cardiac imaging, radiomic techniques (texture analysis)
allow for the detection of interstitial fibrosis invisible to the human eye. Fahmy et al. (2022) demonstrated that
deep learning algorithms applied to cardiac magnetic resonance (CMR) can automatically quantify late
gadolinium enhancement (LGE) with high reproducibility, which is critical for sudden cardiac death risk
stratification.(Fahmy et al., 2022)

2. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

The diagnosis of ARVC is complicated by the physiological enlargement of the right ventricle observed
in endurance athletes.

e AI-ECG: The model described by Haq et al. (2024) demonstrated the ability to differentiate patients
with ARVC from healthy controls based on subtle depolarization and repolarization changes often overlooked
by clinicians.(Haq et al., 2024)

e CMR Automation: Research by Bourfiss et al. (2022, 2023) proved that automatic segmentation of
the right ventricle and feature-tracking strain analysis by Al eliminate inter-observer variability, a major source
of misdiagnosis when relying on the Padua Criteria.(Bourfiss et al., 2022, 2023)

3. Valvular Heart Disease and Auscultation

Recent advancements in digital auscultation and AI-ECG pave the way for cost-effective screening.

e Digital Stethoscope: In a study by Zhou et al. (2025), an Al algorithm analyzing phonocardiogram
(PCG) data was utilized to detect left-sided valvular heart disease. This study employed a machine learning
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algorithm integrated with an electronic stethoscope ("Al stethoscope™") on a cohort of 514 patients. In the
testing phase, the model achieved an Area Under the Receiver Operating Characteristic curve (AU-ROC) of
0.76 for the general detection of left-sided valvular heart disease. Detailed efficacy analysis demonstrated a
sensitivity of 70.00% and specificity of 73.68% for identifying left-sided VHD. It is worth noting that higher
sensitivities for specific defects, such as 93.2% for moderate-to-severe aortic stenosis, have been reported in
related deep learning studies (e.g., Chorba et al., 2021)) referenced by the authors.(Chorba et al., 2021; Zhou
et al., 2025)

e ECG Prediction: Liang et al. (2025) demonstrated that Al can predict the presence of significant
aortic or mitral regurgitation based solely on ECG waveforms, potentially serving as a triage tool prior to
referral for echocardiography. (Liang et al., 2025)

4. Channelopathies (Long QT Syndrome)

Standard QTc measurements often fail in patients with "concealed" Long QT Syndrome (LQTS).

e A study by Bos et al. (2021) from the Mayo Clinic showed that a neural network could identify
patients with congenital LQTS even when their resting QTc was within normal limits (<450 ms), achieving an
AUC of 0.90. This represents a breakthrough in detecting athletes at risk of sudden cardiac death (SCD) who
would otherwise pass standard screening.(Bos et al., 2021)

Table 1. Summary of diagnostic performance of selected Al models in cardiology
(based on analyzed sources)

.. . . Key Source Performance Metric .. o]

Clinical Entity Al Modality Study (AUC / Sensitivity) Clinical Application
(Ko et al., . .

HCM 12-lead AI-ECG 2020) AUC: 0.96 Detection of HCM in

normal" ECGs

Identification of LQTS
Concealed 12-lead AI-ECG (Bos ctal, AUC: 0.90 genotype with normal
LQTS 2021)
QTc
. . Differentiation of
ARVC ALECG (Haq et al., High precision (see ARVC from RV
2024) text) .
adaptation
. (Zhou et al., Sensitivity: ~70%
Va.lvular Digital 2025) (overall), >90% Mass screening in sports
Disease Stethoscope
(severe AS)
CMR Deep (Fahmy et High correlation with Automated SCD risk
Fibrosis (LGE) . al., 2022)
Learning experts assessment
Discussion

Bridging the Diagnostic "Gray Zone" The central challenge in sports cardiology remains the
differentiation of physiological adaptation ("athlete's heart") from pathological remodeling. As highlighted by
Henning (2024) and Lauschke & Maisch (2009), the overlap in structural features—such as left ventricular
hypertrophy and chamber dilation—creates a diagnostic "gray zone" where traditional criteria often lack
specificity. (Henning, 2024; Lauschke & Maisch, 2009)

This review confirms that Al represents a paradigm shift in addressing this ambiguity. By analyzing
non-linear relationships in data, Al models can identify microstructural and electrical signatures of disease that
precede macroscopic remodeling.

Enhanced Sensitivity via Deep Learning A recurring finding across clinical entities is the superior
sensitivity of Deep Learning compared to standard clinical markers.
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e In Electrocardiography (AI-ECG): The work by Bos et al. (2021) demonstrates that Al can detect
"invisible" pathologies, such as concealed Long QT Syndrome or early-stage HCM, from a standard 12-lead
ECG with AUCs exceeding 0.90. This suggests that Al extracts sub-threshold morphological data (e.g., subtle
T-wave variances) that human readers miss.(Bos et al., 2021)

e In Imaging (AI-CMR/Echo): Al eliminates inter-observer variability, a critical flaw in manual
assessment. Automated segmentation and tissue characterization (e.g., LGE quantification or strain analysis)
provide objective metrics for risk stratification in ARVC and HCM. (Bourfiss et al., 2023; Fahmy et al., 2022)

The Promise of Multimodal Integration Current literature suggests that the future of screening lies in
multimodal integration. Single-modality assessments are often insufficient; for instance, anatomic imaging in
CCAA identifies the lesion but not the ischemia (Tso et al., 2020).

Combining AI-ECG (electrical substrate), Al-Stethoscope (hemodynamic turbulence), and Al-Imaging
(structural fibrosis) could theoretically construct a holistic "Digital Twin" of the athlete’s heart, offering a
higher predictive value for Sudden Cardiac Death than any single test. (Palermi et al., 2023; Zhou et al., 2025).
Key components include:

e AI-ECG: analyzing the electrical substrate.

e Al-Stethoscope: detecting hemodynamic turbulence.

e Al-Imaging: quantifying structural fibrosis.

Critical Limitations: The Data Gap Despite the high performance of Al in silico studies, clinical
translation to sports medicine is hindered by significant data biases.

1. Generalizability: Most high-performing algorithms (e.g., for HCM or LQTS) were trained on general
clinical populations or disease registries, not on elite athletes (Bellfield et al., 2022). The unique vagal tone
and repolarization patterns of athletes may lead to false positives in models not calibrated for this specific
physiology.

2. Scarcity of Rare Conditions: Diseases like ARVC and Congenital Coronary Artery Anomalies
(CCAA) are rare, preventing the aggregation of the massive datasets required to train robust Deep Learning
models without overfitting (Aljehani et al., 2023; Lau et al., 2023).

3. "Black Box" Nature: The lack of explainability in neural networks remains a barrier. In the context
of disqualifying a young athlete from competition, clinicians require interpretable features rather than opaque
probability scores. (Smaranda et al., 2024).

Ethical and Legal Implications of Al in Sports Qualification

The deployment of Al in pre-participation screening introduces complex bioethical dilemmas. The
primary concern is the potential for unwarranted disqualification ("false positives"). Algorithms trained on
general populations may misinterpret athlete-specific adaptations—such as pronounced sinus bradycardia or
early repolarization—as pathological, leading to unnecessary exclusion from competition. This carries
profound consequences for a young athlete's career, scholarship opportunities, and mental health.

Conversely, false-negative results in high-risk conditions like ARVC could lead to preventable sudden
cardiac death, raising significant legal questions regarding liability. If an Al tool clears an athlete who
subsequently suffers a cardiac arrest, does liability rest with the physician, the algorithm developer, or the
sports organization? Current consensus suggests that AI must remain a "Clinical Decision Support System"
(CDSS) rather than an autonomous gatekeeper. The final decision on return-to-play must involve shared
decision-making between the expert cardiologist and the athlete, utilizing Al as an adjunctive data point rather
than a definitive verdict.

Conclusions

1. Transformative Screening Potential: Artificial Intelligence, particularly AI-ECG, has demonstrated
the ability to detect occult cardiovascular diseases (such as concealed LQTS and early HCM) with significantly
higher sensitivity than traditional manual interpretation. This positions Al as a powerful, cost-effective "triage"
tool for mass pre-participation screening.

2. Objectivity in Imaging: Al-enhanced imaging (CMR and Echocardiography) provides highly
reproducible, automated quantification of myocardial strain, fibrosis, and wall thickness, reducing the
subjectivity inherent in the assessment of the "athlete's heart."

3. Pathophysiological Insight: Al models can identify disease-specific patterns—such as electrical
remodeling in ARVC or micro-architectural disarray in HCM—that reflect the underlying pathophysiology
(e.g., desmosomal disruption or sarcomeric mutation) before overt structural damage occurs.
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4. Necessity for Athlete-Specific Validation: To ensure safety and prevent unwarranted

disqualifications, Al models must be validated on large, diverse cohorts of elite athletes. Current models
trained on general populations risk misinterpreting physiological adaptations (e.g., vagal bradycardia) as
pathological.

5. Decision Support, Not Replacement: At the current stage of technological maturity, Al should serve

as a Clinical Decision Support System (CDSS) for the sports cardiologist, facilitating early detection and
standardized risk stratification, but not replacing the comprehensive clinical judgment required for return-to-
play decisions.
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