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ABSTRACT

Migraine is a common neurological condition that impairs patients' function, creates substantial societal costs, causes
disability, and diminishes life quality. The wide range of symptoms, triggers, and treatment responses makes migraine
diagnosis and management extremely difficult. The current management strategies rely on patient-maintained diaries, which
are prone to recall bias and thus not effective for accurate tracking. Digital technologies, including mobile health applications
and artificial intelligence systems, now play a significant role in migraine care, and they are revolutionizing treatment
approaches. The new generation of applications uses Al to process biometric and behavioral data to enhance diagnostic
accuracy and support individualized treatment plans, thereby supporting both patient autonomy and clinical decision-making,
This review evaluates scientific evidence on mobile applications and artificial intelligence systems that support migraine
diagnosis, tracking, and treatment. Research indicates the need for randomized controlled trials to establish the clinical value
and advantages of these innovative solutions.
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Introduction

Migraine is a common primary headache disorder characterized by recurrent, unilateral, throbbing pain
lasting up to 72 hours. Attacks are often accompanied by photophobia, phonophobia, and nausea or vomiting.
In some patients, transient focal neurological symptoms, known as aura, precede the headache, distinguishing
migraine with aura from migraine without aura. Migraine most frequently affects individuals in their most
productive years, typically peaking between the ages of 30 and 40, and is recognized as a leading cause of
disability worldwide. [1,2]

The pathophysiology of migraine is complex and multifaceted. It is increasingly conceptualized as a
genetically influenced disorder of sensory processing, potentially involving channelopathy mechanisms and
characterized by altered vasomotor reactivity within the central nervous system. In an acute migraine attack,
the activation of the trigeminovascular system plays a key role. This system comprises the trigeminal nuclei,
ganglia, and ophthalmic division, which innervates meningeal vessels and transmits pain signals. The
stimulation of this neural pathway leads to the release of neuropeptides such as calcitonin gene-related peptide
(CGRP), substance P, and PACAP-38 (pituitary adenylate cyclase-activating polypeptide). The released
neuropeptides trigger neurogenic inflammation, arterial vasodilation, and increased cerebral blood flow. [2, 3]

Migraine is diagnosed clinically based on the International Classification of Headache Disorders
(ICHD-3), since no biomarkers have been identified. [4] It is based on a patient's history of at least five prior
attacks. For an attack to be classified as a migraine, the headache must meet specific criteria [Table 1].
Migraine is classified as episodic or chronic, depending on attack frequency: episodic migraine involves up to
14 headache days per month, whereas chronic migraine is defined by 15 or more headache days per month. [5]

According to data published in 2021 in Cell Reports Medicine, headache disorders were the third leading
cause of years lived with disability (YLDs) globally, after low back pain and depressive disorders. In 2021,
the prevalence of migraine was estimated at 1.2 billion cases worldwide. The international number of YLDs
attributable to migraine is projected to increase from 43.4 million in 2021 to 52.0 million by 2050, highlighting
the growing global burden of migraine. [6]
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Table 1. Diagnostic criteria for migraine with and without aura according to the ICHD-3. [7]

1CHD-3 diagnostic criteria
Migraine without aura Migraine with aura
A. At least five attacksl fulfilling criteria B-D A At least two attacks fulfilling eriteria B and C
B. Headache attacks lasting 4-72 hr (untreated or unsuccessfully treated) B. One or more of the following fully reversible aura symptoms:
C. Headache has at least two of the following four characteristics: - visual
- unilateral location - SENsory
- pulsating quality - speech and/or language
- moderate or severe pain intensity - motor
- aggravation by or causing avoidance of routine physical activity (eg, walking or climbing stairs) |- brainstem
D. During headache at least one of the following: - retinal
- nausea and/or vomiting C. At least three of the following six characteristics:
- photophobia and phonophobia - at least one aura symptom spreads gradually over =5 minutes
E. Not better accounted for by another ICHD-3 diagnosis. - LW OF more aura symploms occur in succession
- each individual aura symptom lasts 5-60 minutes
- at least one aura symptom is unilateral
- at least one aura symptom is positive
- the aura is accompanied, or followed within 60 minutes, by headache
D. Not better accounted for by another ICHD-3 diagnosis.

Methodology of the Literature Review

The literature review was based on a search of electronic databases, including PubMed, Google Scholar,
and the Polish Scientific Bibliography, as well as other peer-reviewed scientific journals. Articles in English
and Polish published between 2017 and 2025 were included. The search was performed using the following
keywords: migraine, headache disorders, mobile health, and artificial intelligence. Priority was given to review
articles, meta-analyses, and clinical studies to ensure high relevance of the discussed solutions.

Monitoring patients with migraine using mobile applications

Multiple methods are currently available for migraine monitoring. Traditionally, symptom tracking has
relied on paper diaries, but there is a growing interest in mobile applications as an alternative tool. Given the
increasing integration of digital health technologies, migraine-related mobile applications have gained
attention as accessible self-management tools. They share several common features, with symptom tracking
as their primary function. Other frequently offered components include medication tracking, diary keeping,
and psychoeducational materials. A promising direction involves integrating multiple data sources, combining
patient self-reports with information collected from external devices such as smartwatches. However, only a
small number of apps currently utilize physiological or biometric data from these devices. Economic
constraints, including subscription models and in-app purchases, limit accessibility for some patient
demographics. Furthermore, a 2022 analysis identified concerning deficiencies in data privacy and security.
Many applications lacked transparent privacy policies, and none provided crisis management features, such as
emergency connectivity with healthcare providers. Most available apps are designed for daily patient use, but
only a few allow data export and sharing with clinicians. These limitations underline the need for further
refinement and standardization of digital tools before their widespread clinical integration. [8]

Several prospective studies have evaluated the use of such applications among migraine patients. A
recent analysis evaluated the efficacy and user experience of the “Migraine Recorder” application, a tool
designed to gather in-depth information on headache patterns and users' general health. The study included
358 adults diagnosed with episodic or chronic migraine who were instructed to use the application for six
months. Each entry, taking approximately two minutes to complete, recorded the frequency and intensity of
migraine attacks, associated symptoms, triggers, impact on daily activities, work absenteeism, productivity
loss, and medication intake. The primary function of the application was to record and monitor headache
occurrences retrospectively rather than to predict future episodes. The data entered by patients enabled
improved understanding of migraine patterns, identification of potential triggers, continuous monitoring of
attack frequency and severity, and evaluation of therapeutic efficacy by both patients and healthcare
professionals. While users reported improved communication with their physicians, the study was limited by
the absence of a control group, making it difficult to rule out the placebo effect associated with using a novel
tool. Furthermore, data analysis was restricted to individuals who remained engaged for the full duration. A
substantial attrition rate (58% dropout) potentially undermines the reliability and generalizability of the
findings. Despite these limitations, the study offers valuable insights into the feasibility of digital migraine
tracking. [9]

e-ISSN: 2544-9435 3



4(48) (2025): International Journal of Innovative Technologies in Social Science

Since mobile applications rely heavily on active patient engagement, their effectiveness depends on
sustained user compliance. Various questionnaires and scales are employed to collect key information
efficiently. One study compared patients using the “Migraine Interactive Care Plan” (MICP) application (121
patients) with a control group (62 patients), examining the number of doctor visits, phone calls, and electronic
messages. The app gathered data including the number of headache days and their impact on daily functioning
via the "Migraine Check-In" weekly survey, medication use frequency, medication concerns through the
"Medication Check-In", and treatment satisfaction on a monthly 5-point Likert scale. MIDAS scores were
collected at baseline and every 3 months. Integration with electronic medical records enabled clinicians to
monitor patient progress and intervene appropriately. Results showed a decrease in average headache days per
week from 4.54 to 2.86 after 26 weeks. Patients using the app had significantly fewer doctor visits (10.7%)
compared to controls (42%), with no increase in phone or electronic contacts, indicating no added workload
for medical staff. Longer app use correlated with higher patient satisfaction. These findings highlight the
potential of integrated digital tools to enhance patient engagement while optimizing clinical efficiency. [10]

In addition to symptom-tracking platforms, several mobile applications incorporate therapeutic features
such as guided relaxation exercises. One such example is the “RELAXaHEAD” app, which combines daily
headache diary entries with 20-minute progressive muscle relaxation (PMR) sessions over a 90-day period.
PMR sessions were available in short (5-minute) and extended (15-minute) formats. On average, participants
engaged in PMR sessions for 22 days throughout the study period, with a mean session duration of 11 minutes.
Participants who interacted with the app at least twice weekly during the first month experienced, on average,
four fewer headache days in the second month compared to baseline. However, despite initial enthusiasm,
long-term adherence proved challenging. Feedback indicated that the audio recordings became monotonous,
and participants struggled to incorporate the 20-minute daily sessions into their routine. Nine participants
withdrew, citing time constraints or increased anxiety. A key limitation was the inability to objectively verify
protocol adherence (e.g., attentiveness during relaxation). Moreover, medication use was not tracked, which
may have influenced the observed changes in headache frequency. Nevertheless, the study suggests that
mobile-based relaxation interventions show promise as adjunctive therapies in migraine management. [11]

A subsequent study evaluated the same application in an acute care setting, recruiting patients presenting
to the emergency department (ED) with migraine attacks. Participants met ICHD criteria and had a MIDAS
score indicating significant disability (>5). The study assessed the feasibility of using the app for post-
discharge self-management over 90 days. Results were promising, showing a mean 38-point reduction in
MIDAS scores and high user satisfaction - 85% of participants would recommend the app and 91% would
recommend PMR. However, engagement levels were suboptimal, with a median of only 34 diary entries and
13 relaxation sessions over the three-month period. These findings illustrate both the therapeutic potential and
the ongoing challenge of maintaining patient engagement in post-emergency digital care. [12]

A 2025 survey study by Young et al. involving users of the Migraine Interactive Care Plan (MICP)
highlighted key patient preferences for digital tools. The majority of respondents (75%) expressed a desire to
customize the frequency of tracking reminders, and nearly 83% were interested in tracking medication
treatment and response. Furthermore, participants emphasized the value of recording personal observations via
free text, which facilitates the identification of unique triggers often missed by standardized forms. These
findings suggest that flexibility and personalization are critical factors for sustaining patient engagement with
mobile health platforms. [13]

Forecasting and predicting migraine attacks

Accurate forecasting of migraine attacks is critical for timely intervention, and patient demand for
reliable predictive tools remains very high. In a survey including 565 respondents, nearly 90% expressed a
desire for a predictive device, preferably wrist-worn. [14]

The key challenge has been identifying triggers that signal an attack, which traditionally relied on
subjective patient perception. These factors can be exogenous or endogenous, making them harder to define
[Table 2]. Currently, mobile health applications and wearable devices enable more objective monitoring of
triggers and symptoms by collecting vital signs and physiological data. [15]

The primary goal for patients is to anticipate the timing and severity of attacks, as acute medications are
most efficacious when administered during the prodromal or early headache phase. Research by Stubberud et
al. identified premonitory symptoms (e.g., thirst, edema, thermal dysregulation) and predicting features, like
sleep duration, baseline pain intensity, and functional impairment. Furthermore, Katsuki et al. demonstrated
that meteorological variables, particularly atmospheric pressure and humidity, significantly influence headache
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incidence, suggesting their utility as parameters in predictive modeling. Modern Al-driven methodologies now
facilitate the integration of these subjective inputs (e.g., electronic diaries) with objective biometric data (from
wearables) and environmental metrics to enhance prediction accuracy. [15, 16, 17]

Table 2. Overview of exogenous and endogenous migraine triggers.
Source: Adapted from Adnyana et al. [18]

Trigger factors for migraine attacks
Exogenous Endogenous
Alcohol consumption Emotional stress / Anxiety
Specific foods (e.g., chocolate, aged cheese) Skipping meals
Caffeine (withdrawal or excess) Menstruation
Food additives (e.g., aspartame, monosodium glutamate) Hormonal fluctuations (e.g., menopause, pregnancy)
Bright or flickering lights Sleep disturbances (insomnia, oversleeping)
Smoking / Tobacco smoke exposure Dehydration
Strong odors (e.g., perfumes)
Weather changes / Thermal stimuli
Use of hormonal contraceptives

A prominent example of this integrative approach is the “mBrain” project, which pairs a mobile
application with the “Empatica E4” wearable device. The system collects continuous physiological data -
including electrodermal activity (skin conductance), interbeat intervals, skin temperature, and accelerometry -
and employs machine learning algorithms (specifically CatBoost) to automatically classify sleep quality and
stress levels. Users contribute by logging attacks, medications, and lifestyle factors, creating a comprehensive
dataset visualized on an interactive timeline. This allows healthcare providers to identify individualized trigger
patterns via a clinical dashboard. While mBrain represents a significant step toward personalized management
and enhanced clinician-patient collaboration, it has not yet yielded a fully automated, validated predictive
model ready for widespread clinical deployment. [19]

A recent study from 2024 further advanced this approach by utilizing the newer Empatica Embrace Plus
device to monitor autonomic nervous system (ANS) alterations specifically during pre-migraine nights. By
analyzing physiological metrics such as electrodermal activity (EDA), skin temperature, and accelerometer
data in 5- to 10-minute frames, the researchers identified significant differences between nights preceding a
migraine attack and migraine-free nights. The predictive model developed using the XGBoost algorithm
achieved an accuracy of roughly 80% (0.806) in distinguishing pre-ictal states. These findings underscore the
potential of nocturnal biosignal monitoring as a non-invasive method for early migraine detection, although
the authors noted that further refinement is necessary for broad clinical application. [20]

Machine learning techniques are increasingly being tested for their predictive potential. For instance,
the "Cerebri" application aggregated patient-reported data (prodromal symptoms, sleep, physical activity) with
physiological measures (heart rate, muscle tension) collected via wireless sensors during biofeedback sessions.
Based on these multimodal data, several machine learning models were developed to forecast next-day
headache occurrence. The best-performing model achieved an Area Under the Receiver Operating
Characteristic Curve (AUC) of 0.62, correctly predicting headache presence or absence in approximately two-
thirds of cases. Significant predictive features included physiological metrics, such as average heart rate,
alongside prodromal symptoms like food cravings and chills.

While these results are promising, the predictive accuracy remains moderate, underscoring the need for
further validation in larger cohorts. Future research must focus on advanced models capable of processing
larger datasets over longer observation periods to improve sensitivity. If achieved, effective attack prediction
could revolutionize migraine management by reducing anticipatory anxiety and facilitating preemptive
treatment. However, the implementation of such tools requires caution to prevent maladaptive behaviors, such
as medication overuse in response to false-positive predictions. [15]

A 2025 narrative review by Dumkrieger confirms that while machine learning holds great promise,
individualized prediction models consistently outperform generalized ones, highlighting the need for
personalized algorithms adapted to each patient's unique physiology and triggers. However, the field still lacks
common standards for evaluating these algorithms, which hinders direct comparison between different
predictive tools. [21]
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Overuse of painkillers by patients with migraine

Medication Overuse Headache (MOH) represents a significant complication in migraine management.
The Polish Headache Society defines MOH as a headache occurring on 15 or more days per month in patients
who regularly overuse acute medications for over three months (specifically, >10 days for triptans, ergotamine,
or opioids, and >15 days for simple analgesics or NSAIDs). The cornerstone of MOH management is the
withdrawal of the offending agent coupled with the initiation of appropriate prophylactic therapy. Clinical
guidelines strongly advocate for restricting acute medication intake while prioritizing effective preventive
strategies. [22]

Digital health tools are uniquely positioned to address this challenge. Mobile applications can transform
passive patient monitoring into active disease management by providing automated alerts for medication
thresholds, quantifying acute treatment efficacy, and tracking consumption patterns in real-time. For example,
the "Migraine Interactive Care Plan" (MICP) application prompts users to log medication type and response,
creating a feedback loop that encourages self-reflection. Such patient-generated health data (PGHD) is
essential not only for empowering patients but also for enabling clinicians to detect early warning signs of
analgesic dependence before chronic overuse becomes established. [10]

Furthermore, artificial intelligence enhances MOH risk stratification by integrating complex datasets,
including clinical history, biochemical markers, and lifestyle factors. A recent study developed a machine
learning algorithm specifically designed to predict excessive medication consumption. The model
demonstrated high discriminative ability, achieving a c-statistic of 0.83, effectively distinguishing between
probable and definite medication overuse. By facilitating the early identification of high-risk individuals, such
Al-driven tools allow for timely therapeutic interventions, potentially preventing migraine chronification and
mitigating the severe complications associated with medication overuse. [23]

Supporting the diagnosis and differentiation of headaches

Artificial intelligence models have demonstrated significant potential in classifying various primary
headache disorders, achieving accuracies of up to 81% in distinguishing between migraine and tension-type
headaches. Crucially, these tools can bridge the expertise gap in primary care. Studies indicate that Al
assistance can enhance diagnostic accuracy among non-specialist physicians from a baseline of 46% to an
impressive 83.2%. [17]

One promising avenue for automated data collection is the use of medical chatbots. For instance, the
chatbot "Vik" was shown to effectively and rapidly gather symptom data remotely, with users completing an
ICHD-3-based questionnaire in an average of just 3.24 minutes. While Vik shows promise in reducing
healthcare workload by automating routine monitoring and increasing patient engagement, its utility is
currently limited to common headache types. The inability to identify rare or complex headache forms poses
a risk of misinterpretation, underscoring the need for further research into clinical utility and data quality. [24]

Similarly, the "Migraine Recorder" app employs built-in logic based on ICHD-3 criteria to automatically
classify patient-reported episodes, offering a preliminary assessment of whether a headache meets migraine
criteria. [9]

Beyond simple questionnaires, advanced Al solutions utilizing Machine Learning (ML) and Deep
Learning (DL) are achieving diagnostic accuracies exceeding 90%. These systems often integrate multi-
dimensional data, analyzing clinical questionnaires alongside neuroimaging (MRI, fMRI) and
neurophysiological signals. A notable example is the Computer-based Diagnostic Engine (CDE), which has
proven particularly valuable in high-pressure environments like emergency departments. By synthesizing
complex symptom data and multimodal imaging, these systems assist clinicians in the critical triage step of
differentiating between primary and secondary headaches. [25]

A validation study of the CDE involving 276 participants compared its performance against diagnoses
made by headache specialists using semi-structured interviews. Among the 212 patients who completed both
assessments, the system demonstrated robust diagnostic concordance, with approximately 90% sensitivity and
96% specificity. Although the automated assessment required more time than a standard interview, the tool
facilitates self-assessment and has the potential to accelerate access to appropriate treatment, particularly in
regions with limited specialist availability. However, challenges remain in translating subjective, complex
symptoms (e.g., photophobia, phonophobia) into standardized digital formats, which can lead to false positives.
Future iterations should aim to integrate longitudinal data from headache diaries and biosensors to refine
symptom interpretation. [26]
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In summary, computer-based diagnostic tools are increasingly capable of replicating specialist-level
assessments, thereby improving care accessibility and empowering patients through self-monitoring.
Nevertheless, the reliance on self-reported data introduces potential bias. To ensure patient safety and
diagnostic precision, further standardization and rigorous clinical validation of these digital solutions are
essential before they can fully complement traditional clinical practice. [27]

Digital Phenotyping and Digital Twin concept

Digital phenotyping is defined as the continuous, real-time acquisition and analysis of behavioral,
physiological, and environmental data via personal digital devices, including smartphones and wearable
biosensors. This methodology allows for the objective, high-resolution characterization of disease
manifestations in a real-world setting, transcending the limitations of traditional, subjective self-reports. In
migraine management, digital phenotyping synthesizes active data (e.g., patient-reported outcomes via apps)
with passive data (e.g., unobtrusive physiological monitoring) to construct a multidimensional profile of the
patient's condition. Such granular data facilitates the identification of individual trigger patterns, accurate
attack forecasting, and the tailoring of therapeutic interventions, thus embodying the principles of precision
medicine. A concrete example of this potential is the "machine prescription" approach demonstrated by
Stubberud et al., where causal machine learning models analyzing 1,446 chronic migraine patients successfully
predicted individual treatment responses to preventive medications. This data-driven strategy was estimated
to reduce the time-to-response by 35% compared to standard expert guidelines, illustrating how computational
models can optimize pharmacotherapy. Artificial intelligence is pivotal in this ecosystem, as machine learning
algorithms are required to process the high-volume, high-velocity datasets generated. By automating pattern
recognition and predictive modeling, Al supports the transition from reactive care to proactive, personalized
management. [28, 29]

The ultimate evolution of this data-driven approach is the creation of a “Digital Twin” - a dynamic
virtual replica of an individual patient. Constructed from a comprehensive integration of genetic, clinical,
behavioral, and environmental data, a digital twin serves as a sophisticated computational sandbox. It allows
clinicians to run simulation-based scenarios to predict treatment efficacy, assess potential adverse effects, and
model disease progression without exposing the physical patient to risk. For a complex, fluctuating disorder
like migraine, the digital twin holds immense potential. It envisions a seamless bridge between physical clinical
data and digital computational models, enabling the optimization of individualized treatment plans before
clinical implementation. However, realizing this vision demands robust interdisciplinary collaboration among
neurologists, data scientists, and bioengineers, alongside rigorous attention to ethical frameworks and data
security. Together, digital phenotyping and digital twin technologies represent the next frontier in the pursuit
of truly personalized, data-driven migraine care. [30]

Limitations and ethical issues

Telemedicine has emerged as a valuable complement to traditional face-to-face consultations, helping
maintain a close doctor-patient relationship even at a distance. This approach is particularly important for
underserved populations, including rural communities in low- and middle-income countries, where access to
specialized migraine care is limited. [31]

Despite these advantages in remote monitoring and communication, patient trust remains a critical
concern. Commonly reported fears include diagnostic errors, breaches of privacy, reduced human interaction,
and perceived increases in healthcare costs. Most patients view Al as an assistive tool rather than a replacement
for physicians, underscoring the irreplaceable role of empathy and the therapeutic alliance. Physical
examination remains essential at initial consultations and cannot be fully digitized. In parallel, privacy and
data protection are paramount, given the extensive use of personal health data collected via mobile apps and
wearable devices. Strict compliance with data protection frameworks, such as the EU General Data Protection
Regulation (GDPR), is necessary to minimize the risk of data misuse and breaches of confidentiality. [25]

Electronic headache diaries and digital monitoring tools have contributed to improved migraine
outcomes, yet important limitations persist. Identifying true triggers remains challenging due to the complex
interplay of biological, behavioral, and environmental factors, as well as the burden on patients to log
symptoms consistently. Moreover, migraine symptoms such as photophobia and nausea can limit patients’
ability to use screens during attacks. The proliferation of heterogeneous digital tools, often lacking
interoperability, further complicates data integration and interpretation for both patients and clinicians. [32]
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While Al-based approaches hold great promise, they are not without limitations. Diagnostic
recommendations generated or supported by Al systems must remain under physician supervision, and most
existing studies are limited by small sample sizes, selection bias, and lack of external validation. Additional
concerns include algorithmic discrimination, limited transparency, and the risk of exacerbating digital
inequalities if vulnerable groups have less access to technology. Addressing these gaps through rigorously
designed, prospective studies is essential to establishing the safety, effectiveness, and real-world clinical utility
of Al-driven tools in migraine care. Furthermore, the advent of advanced concepts like Digital Twins
necessitates even more robust ethical frameworks to safeguard highly sensitive integrated data against
unauthorized re-identification and misuse. [25]

Conclusions

Migraine is a highly heterogeneous neurological disorder characterized by diverse triggers and varying
clinical manifestations among patients. Consequently, individualized treatment strategies must form the
cornerstone of effective management. The systematic acquisition of detailed patient data - encompassing
specific triggers, alleviating factors, and therapeutic responses - is essential for tailoring interventions to
individual needs.

Mobile health applications offer a scalable, accessible mechanism for collecting this critical information
through digital headache diaries and standardized health surveys. The integration of these platforms with
objective biometric data from wearable devices (e.g., smartwatches) provides a holistic view of the patient’s
condition, enabling a deeper understanding of migraine dynamics. Empowered by artificial intelligence
algorithms, these technologies hold the potential to transform care by facilitating early attack prediction,
supporting diagnostic accuracy, and optimizing therapeutic decision-making in real-time.

Nevertheless, the transition from potential to practice requires caution. Further rigorous research is
needed to validate the long-term clinical efficacy, safety, and cost-effectiveness of these emerging technologies.
Furthermore, ethical considerations - particularly the robust protection of sensitive personal health data - must
remain a paramount priority in the future development and deployment of digital migraine solutions.
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