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ABSTRACT 

Hypoxia accompanying chronic inflammatory diseases leads to dysregulation of cells’ homeostasis, causes energy deficits 
and intensifies inflammatory processes. Hypoxia-inducible factors (HIFs) are the central regulators of the response to 
hypoxia, enabling metabolic and functional adaptation of immune cells by altering gene expression. HIF-1α and HIF-2α 
modulate the lifespan, differentiation, priming and activation of neutrophils, macrophages, lymphocytes, and dendritic cells- 
playing a key role in influencing the balance between proinflammatory and reparative responses. Interactions between HIF 
and NF-κB pathways regulate hypoxic and inflammatory signaling, and as a result determine course, severity and treatment 
efficacy of many chronic diseases. Those two pathways are capable of influencing each other in a manner of negative 
feedback-loop. Understanding the mechanisms of this regulation opens up new therapeutic perspectives in the treatment of 
pulmonary diseases associated with hypoxia and inflammation, and a hypothetical possibility to  slow down the ratio at 
which chronic inflammatory response contributes to deterioration of patients’ quality of life. 
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Introduction 

In numerous pathological conditions, including chronic inflammatory lung diseases, pulmonary fibrosis, 

and chronic respiratory failure, there is an imbalance between the oxygen demand of cells and its supply [1-

3]. A deficit of oxygen, which is the final electron acceptor in the mitochondrial respiratory chain, leads to 

collapse of mitochondrial bioenergetic function, reducing yield of adenosine triphosphate (AT) production, 

and in consequence insufficient energy for cell’s physiological processes [2]. In areas of ongoing inflammation, 

a specific hypoxic microenvironment develops, referred to as "inflammatory hypoxia" [3]. Acccelerated 

metabolism of activated immune cells (neutrophils, monocytes) promotes cell proliferation and the expression 

of oxygenase enzymes, which further deepens deficit of oxygen [4]. By exacerbating tissue dysfunction 

pathological hypoxia contributes to disease’s progress through the disregulation of the immune response [5]. 

Furthermore, state of hypoxia by itself influences the course of inflammatory processes by regulating the 

activity of oxygen-dependent signaling pathways in many types of immune cells [6,7]. 
 

HIF Pathway Modulates Cellular Adaptation in Response to Hypoxia 

HIF transcriptional complex acts as the key regulator of the cellular response to oxygen deficiency [8]. 

The discovery of the molecular mechanism of HIF-dependent cellular adaptation as a response to hypoxia was 

awarded the Nobel Prize in Physiology or Medicine in 2019 (W.G. Kaelin, G.L. Semenza, PJ.Ratcliffe) [9). 

HIF is a heterodimeric transcription factor consisting of an oxygen-regulated HIF- α subunit and a 

constitutively present HIF-1β subunit, also known as aryl hydrocarbon receptor nuclear translocator (ARNT). 

So far, three isoforms of the HIF-α have been identified: HIF-1α; HIF-2α; and HIF-3α, each differing in the 

range of regulated genes and their function [10-12]. Table 1. includes key differences between HIF- α isoforms. 
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Table 1. Isoforms of HIF- α 

 
Isoform Primary Functions Clinical significance 

HIF-1α 
Regulation of glycolysis, cell 

survival in hypoxia 

Inflammation 

Targeting Cancers 

HIF-2α 
Angiogenesis, endothelial cell 

proliferation 

Anemia 

Targeting Cancers 

HIF-3α 
Regulation of HIF-1/2 activity, less 

known 
Potential biomarker 

 

In conditions of normoxia, HIF-a is hydroxylated by the dioxygenase families (PHD1-3 and FIH), then 

degraded by the von Hippel-Lindau protein (pVHL) via 26S proteasome(13]. Hypoxia inhibits the activity of 

hydroxylases, leading to the stabilization of HIF- α, its dimerization with HIF-1β, and activation of target genes 

through binding to HRE (hypoxia response element) sequences in DNA [14]. 

 

HIF, NF-κB and Intertwinement of Two Signaling Pathways 

HIF-signal pathway interacts strongly with another central pathway regulating the inflammatory 
response, the nuclear transcription factor NF-κB [15,16]. Both pathways share regulators, target genes and 

activate in response to cytokines and pathogenes. PHD hydraxylases, which control HIF stability, also 

participate in regulation of NF-κB pathway[17]- 

In conditions of chronic inflammation, typical for example in COPD, increased NF-κB activity enhances 

HIF-1a transcription, which promotes hypoxia [18]. 

Studies in animal models of COPD have shown that pharmacological inhibition of NF-kB activity 

reduces HIF-1α expression, leading to a reduction in inflammation and improvements in epithelium [19]. 

 

HIF Signaling Pathway Regulates Immune Cells’ Metabolism 

HIF controls the effector function of immune cells primarily by regulating their metabolism [14,25–27], 

as per Table 2. 

 

Table 2. Effect of HIF on various immune cells. 

 
Cell Type Effect of HIF Results 

Neutrophils 
Extended Lifespan; Production of 

antimicrobial peptides 
Innate immunity Increase 

Macrophages 
M1/M2 polarization; migration to 

inflammatory foci 
Increase of Inflammatory Response 

T cells 
Th17/Treg equilibrum control; 

CD8+ cytotoxic activity 
Autoimmunity, Anti-Cancer Cells 

B Lymphocytes 
Proliferation, Promotion of humoral 

response 
Increase in Antybody Production 

Mast cells/eosinophils Production of Cytokines, VEGF Asthma, allergic reactions 

 

In inflammatory niches, cells migrate from the blood to an environment with low pO₂ and must undergo 

metabolic adaptation. In granulocytes, glycolysis—regulated by HIF—is the main source of ATP [26]. Both 

isoforms (HIF-1α and HIF-2α) reduce dependence on OXPHOS, inhibit the TCA cycle, and shift metabolism 

toward anaerobic ATP production [28–30]. 

HIF-1α prolongs neutrophils’ lifespan, increases the expression of β2-integrins, the production of 

antibacterial peptides and key glycolysis enzymes; the absence of HIF-1α impairs ATP generation, aggregation, 

chemotaxis and bacterial killing [26,31,32]. 

Macrophages- HIF-1α promotes macrophages’ differentiation into M1 (pro-inflammatory) phenotype, 

while HIF-2α promotes the M2 (repair) phenotype. Deletion of HIF-1α reduces ATP, survival, invasion, and 

bactericidal activity [32]; HIF-1α increases migration to sites of infection via ↑CXCR4 and ↓CCR5 [14]. IL-8 

is a target of HIF-1α; increased secretion of IL-8 by alveolar macrophages may accelerate ARDS. 

Dendric Cells- HIF-dependent metabolic reprogramming participates in dendric cells’ activation, 
differentiation, proliferation, migration, and apoptosis; HIF regulates the production of IFN-γ, IL-22, IL-10, 

and the expression of chemokine receptors that attract neutrophils [14,31,33]. 
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T lymphocytes - HIF-1α is crucial for T-cell survival; it controls the Th17/Treg switch (important in 

autoimmunity) [14,31]. In CD8⁺ T cells, HIF-1α promotes glycolysis necessary for effector function and the 

generation of populations with antitumor properties; conditional VHL knockout (permanently stable HIF) 

accelerates the differentiation of long-lived memory effectors against viral infections. HIF-1α deletion limits 

CTL infiltration and their killing of cancer cells [25]. Hypoxia and HIF enhance glycolysis in B cells, affecting 

the development, proliferation, apoptosis, and maturation of high-affinity antibody responses [14]. 

Mast cells, eosinophils, basophils. HIF-1α stabilization supports survival and function; after TLR 

stimulation, HIF-1α enhances IL-8 and TNF-α and the expression of histidine decarboxylase (→ histamine) 

[14]. In the bronchial epithelium, HIF-1 induces VEGF, increasing vascular permeability and airway edema 

[14]. HIF-1α and HIF-2α modulate eosinophil chemotaxis and asthma pathogenesis; HIF-1α supports basophil 

activity in chronic inflammation. HIF is also associated with the formation of extracellular traps (METs, NETs) 

with antimicrobial significance. 

 

Mitochondrial regulation and the role of ROS 

Mitochondria participate in the modulation of HIF stability through reactive oxygen species (ROS) 

generated in the respiratory chain [28]. ROS inhibit the degradation of HIF-1α and enhance its transcriptional 

activity. The use of antioxidants such as ebselen reduces HIF-1α stabilization, confirming the role of oxidative 
stress in the regulation of this pathway [29]. 

 

Clinical Significance and Application 

The HIF pathway is an attractive therapeutic target in diseases involving hypoxia and chronic 

inflammation. The best-known group of substances are HIF hydroxylase inhibitors, which stabilize HIF-α and 

enhance the adaptive response [30]. Preclinical studies have shown that modulation of HIF activity can both 

reduce tissue damage and increase antimicrobial resistance [31,32]. 

At the same time, due to the strong connection between the HIF pathway and other regulatory systems 

(NF-κB, p53, Notch), therapeutic targeting requires particular caution and further research [33]. 

 

Conclusions 

Hypoxia-inducible factors (HIFs) play a central role in regulating gene expression under hypoxic 

conditions. Stabilization of HIF-1α enables cells to adapt metabolically and functionally, but may also 

contribute to immune dysfunction and the progression of chronic diseases. The interaction between HIF and 

NF-κB pathways forms the basis for the integration of inflammatory and hypoxic responses, opening up new 

therapeutic perspectives in the treatment of lung diseases and other conditions associated with chronic 

inflammation and hypoxia. 
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