

International Journal of Innovative Technologies in Social Science

e-ISSN: 2544-9435

Scholarly Publisher
RS Global Sp. z O.O.
ISNI: 0000 0004 8495 2390

Dolna 17, Warsaw,
Poland 00-773
+48 226 0 227 03
editorial_office@rsglobal.pl

ARTICLE TITLE PREVENTIVE STRATEGIES FOR RECURRENT URINARY TRACT INFECTIONS: THE ROLE OF DIET AND NON-ANTIBIOTIC AGENTS

DOI [https://doi.org/10.31435/ijitss.4\(48\).2025.4175](https://doi.org/10.31435/ijitss.4(48).2025.4175)

RECEIVED 02 November 2025

ACCEPTED 23 December 2025

PUBLISHED 26 December 2025

LICENSE The article is licensed under a **Creative Commons Attribution 4.0 International License**.

© The author(s) 2025.

This article is published as open access under the Creative Commons Attribution 4.0 International License (CC BY 4.0), allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

PREVENTIVE STRATEGIES FOR RECURRENT URINARY TRACT INFECTIONS: THE ROLE OF DIET AND NON-ANTIBIOTIC AGENTS

Martyna Różańska (Corresponding Author, Email: martyna.ro899@gmail.com)

University Hospital Wrocław, Wrocław, Poland

ORCID ID: 0000-0002-3351-7992

Bartłomiej Kusy

Medical University of Warsaw, Warsaw, Poland

ORCID ID: 0009-0000-8355-2262

Agnieszka Bajkacz

University Hospital Wrocław, Wrocław, Poland

ORCID ID: 0000-0002-2027-8216

Karolina Niewola

4th Military Clinical Hospital, Wrocław, Poland

ORCID ID: 0009-0003-8096-9742

Michał Robak

Independent Public Healthcare Center in Ostrów Wielkopolski, Ostrów Wielkopolski, Poland

ORCID ID: 0000-0001-6318-4095

Marcin Płonka

HCP Medical Centre, Poznań, Poland

ORCID ID: 0009-0003-8141-1409

Maciej Dudziński

Mazovian Provincial Hospital of St. John Paul II in Siedlce, Siedlce, Poland

ORCID ID: 0009-0001-5059-0403

Hanna Ćwirko

University Clinical Hospital of Jan Mikulicz-Radecki in Wrocław, Wrocław, Poland

ORCID ID: 0009-0005-4947-5343

ABSTRACT

Background: Recurrent urinary tract infections remain a significant clinical and public health concern due to their high prevalence, considerable recurrence rates, and the growing challenge of antimicrobial resistance. In light of the limitations associated with long-term antibiotic use, non-antibiotic prophylactic strategies have garnered increasing interest. This review synthesizes current evidence on the efficacy of various non-antibiotic interventions, including behavioral and dietary modifications, probiotics, cranberry products, D-mannose, methenamine hippurate, topical vaginal estrogen, and immunoprophylaxis.

Aim: This study aims to introduce non-antibiotic approaches to the prevention of recurrent urinary tract infections and to highlight how their integration into clinical practice may decrease reliance on antibiotics and improve long-term patient outcomes.

Methods: This narrative review synthesizes current research findings on the topic. The literature search was conducted using PubMed and Google Scholar database, focusing on recent studies relevant to non-antibiotic strategies for the prevention of recurrent urinary tract infections.

KEYWORDS

Recurrence, Urinary Tract Infection, Prevention, Prophylaxis

CITATION

Martyna Różańska, Bartłomiej Kusy, Agnieszka Bajkacz, Karolina Niewola, Michał Robak, Marcin Płonka, Maciej Dudziński, Hanna Ćwirko. (2025) Preventive Strategies for Recurrent Urinary Tract Infections: the Role of Diet and Non-Antibiotic Agents. *International Journal of Innovative Technologies in Social Science*. 4(48). doi: 10.31435/ijitss.4(48).2025.4175

COPYRIGHT

© The author(s) 2025. This article is published as open access under the **Creative Commons Attribution 4.0 International License (CC BY 4.0)**, allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

Introduction

Urinary tract infections (UTIs) represent a major global health issue, affecting over 150 million people each year [1]. Typical symptoms include increased urinary frequency, urgency to urinate, dysuria, hematuria, suprapubic pain, and foul-smelling urine [2]. These infections are broadly categorized into uncomplicated and complicated UTIs. Uncomplicated UTIs are most commonly caused by *Escherichia coli*, followed in decreasing frequency by *Staphylococcus saprophyticus*, *Proteus* spp., *Klebsiella* spp., *Enterococcus* spp., and *Pseudomonas aeruginosa* [3]. In cases of complicated UTIs, *Escherichia coli* remains the most common etiological agent. Additionally, with lower frequency, pathogens such as *Klebsiella* spp., *Enterococcus* spp., and *Pseudomonas* spp. are also involved [4]. Complicated UTIs, in contrast to uncomplicated ones, often involve anatomical abnormalities of the urinary tract and may require prolonged antibiotic therapy or surgical interventions [5]. UTIs are more common in women due to the shorter length of the female urethra, which facilitates easier ascension of bacteria into the bladder. Besharati et al. reported that these infections occur more than twice as frequently in women compared to men [6]. The incidence of UTIs among women is approximately 33% by the age of 25 [7]. Moreover, nearly 50% of all women experience at least one infection during their lifetime [7]. Infections occurring more than twice within a six-month period or at least three times within one year are classified as recurrent urinary tract infections (rUTIs) [8]. In the prevention of rUTIs, prophylactic antibiotics are commonly administered either as long-term low-dose regimens or as postcoital prophylaxis. According to the latest guidelines of the European Association of Urology, recommended prophylactic agents include nitrofurantoin, trimethoprim, or fosfomycin trometamol [9]. Continuous antibiotic prophylaxis has demonstrated high efficacy. However, as with all pharmacotherapeutic interventions, its use may be accompanied by adverse drug reactions and is implicated in the emergence and propagation of antimicrobial resistance [10, 11]. For this reason, non-antibiotic prophylactic strategies should be considered as the first-line approach [9]. In this review, we present the current state of knowledge on non-antibiotic prevention strategies for patients with rUTIs, along with the role of dietary and behavioural interventions.

Behavioural modifications

The European Food Safety Authority recommends a daily water consumption of 2.0 liters for adult females and 2.5 liters for adult males [12]. The volume of fluid intake represents a significant determinant in the incidence of rUTIs. Elevated consumption promotes increased urinary frequency, thereby reducing bacterial colonization in the urinary tract via enhanced mechanical clearance [13]. Hooton et al. reported that increasing fluid consumption beyond habitual levels in premenopausal women reduced the frequency of rUTIs by up to 50% [14]. Such a simple measure represents a cost-effective strategy that has been shown to significantly reduce healthcare expenditures associated with the management of rUTIs [15]. Another critical behavioural determinant is the direction of perineal hygiene following defecation or urination. Wiping in a front-to-back direction is recommended, as wiping from back to front increases the risk of transferring enteric bacteria from the anal region to the periurethral area, thereby elevating the likelihood of UTI [16,17]. UTIs are also associated with sexual activity. Increased frequency of sexual intercourse is positively correlated with a higher incidence of infections [18, 19]. However, postcoital voiding significantly reduce the likelihood [20]. Another recognized risk factor is the use of tight-fitting synthetic underwear, which promotes the development of a warm and moist environment in the perineal region, thereby facilitating bacterial growth and increasing the risk of urinary tract colonization and subsequent infection [20, 21].

Diet

Dietary modification represents a promising, non-pharmacological strategy for UTI prevention, particularly in individuals experiencing frequent recurrences [22]. In a case-control study, Kontiokari et al. reported that higher intake of fresh fruits, berry juices, and fermented milk products was significantly associated with a lower incidence of UTIs [22]. These findings suggest that specific dietary components may exert a protective effect, potentially through antimicrobial, anti-adhesive, or microbiota-modulating mechanisms. Another study found that the consumption of oily fish and cheese is associated with a reduced incidence of UTIs, whereas high alcohol intake appears to exert the opposite effect [23]. The observed associations may be explained by the distinct effects of the investigated dietary components on immune system and gut microbiota composition [23]. Several studies indicated that a vegetarian diet may lower the risk of UTIs by approximately 16%, with the protective effect being especially notable in women [24]. Maintaining a healthy, well-balanced diet together with an appropriate body weight constitutes a key modifiable factor in reducing the risk of recurrent infections [25].

Cranberry products

Cranberries contain high amounts of bioactive polyphenols such as phenolic acids, anthocyanins, and flavonoids [26]. A particularly important role in the prevention of rUTIs is attributed to proanthocyanidins (PACs), which reduce the adherence activity of *E. coli* to bladder or vaginal epithelial cells [27]. PACs also exhibit anti-inflammatory properties related to the inhibition of interleukin-8, interleukin-6 and interleukin-1 β release [28, 29, 30]. A Systematic Review and Network Meta-analysis demonstrated that cranberry juice is the most effective form of cranberry product, with its use reducing the need for antibiotic therapy in nearly half of the cases [31]. Conversely, a recent randomized, double-blind, placebo-controlled trial found that whole cranberry fruit powder was associated with a lower rate of culture-confirmed UTIs, and that its supplementation was considered safe [32]. Although there have been many findings, there is currently a lack of sufficiently well-designed scientific studies to conclusively consider cranberry-containing products as effective in the prevention of UTIs [33]. However, due to the low incidence of adverse effects and the favorable safety profile of cranberry-containing products, their use is recommended for prophylactic purposes and as an adjunct to standard treatment [34].

Probiotics

Lactobacilli can UTIs through many mechanisms, including competitive inhibition of uropathogen binding to vaginal epithelial cells, congregation around uropathogens, production of bacteriocins, hydrogen peroxide and lactic acid, acidic environment caused by lactic acid, inhibition of bacterial biofilm formation and downregulation of pro-inflammatory cytokines [35, 36, 37, 38]. Only selected strains of *Lactobacillus* demonstrate significant activity in the prevention of UTIs. The most effective outcomes have been observed with the administration of *Lactobacillus rhamnosus* GR-1 and *Lactobacillus reuteri* RC-14 [39]. A randomized, placebo-controlled trial demonstrated that the use of the *Lactobacillus crispatus* strain may also provide benefits in reducing recurrences [40]. Premenopausal women using the *Lactobacillus crispatus* probiotic

(Lactin-V) experienced nearly a 50% lower recurrence rate of UTIs compared to those receiving a placebo [40]. Another randomized, double-blind, placebo-controlled trial showed that both vaginal probiotics alone and the combination of vaginal and oral probiotics effectively prevent rUTIs, with the combination showing superior efficacy [41]. However, recent systematic reviews and meta-analyses reported no significant reduction in rUTIs among individuals using probiotics, attributing this to the limited number of well-designed studies, small sample sizes, and inconsistent probiotic dosing across trials [42, 43, 44].

D-mannose

D-mannose, the C-2-epimer of glucose, is a naturally occurring monosaccharide and a biologically significant constituent used in dietary, cosmetic, and pharmaceutical applications [45]. This substance has the ability to block the adhesion of *Escherichia coli* to uroepithelial cells [46]. A post hoc analysis conducted by Wagenlehner et al. showed that the use of D-mannose as monotherapy exhibits therapeutic effects comparable to antibiotics in cases of acute UTIs [47]. A randomized clinical trial by Kranjčec et al. investigated the effectiveness of D-mannose in the prevention of rUTIs [48]. The study showed that daily supplementation with 2 g of D-mannose over six months resulted in fewer UTI recurrences compared to nitrofurantoin treatment, and significantly fewer than placebo [48]. A randomized controlled trial comparing a new D-mannose-based dietary supplement DAPAX also demonstrated significant clinical benefits in cases of uncomplicated UTIs [49]. The DAPAX complex supplement, in addition to its main ingredient, contained citric acid, prebiotic fibers, astragalus, and dandelion [49]. Contrasting conclusions were drawn from a randomized controlled trial involving 598 women with a history of at least two UTIs in the previous six months or three infections within the past twelve months [50]. This study did not demonstrate significant benefits from the use of D-mannose [50]. A systematic review from 2022 evaluated the effectiveness of D-mannose for preventing and treating UTIs in adults and children [51]. Seven randomized controlled trials were included in the analysis, although they provided low-quality evidence, which prevented D-mannose from being recognized as an effective agent for the prevention of UTIs [51]. Further well-designed studies are needed before this substance can be recommended for prophylactic use.

Methenamine hippurate

Methenamine hippurate has been used for many years to prevent UTIs, and its antiseptic effect is attributed to the release of formaldehyde in an acidic environment [52]. A Cochrane review by Lee et al. that assessed 13 studies concluded that patients without a neuropathic bladder or structural abnormalities of the urinary tract may benefit from the use of methenamine hippurate [53]. In contrast, a 2021 meta-analysis including six studies with a total of 557 participants demonstrated a statistically non-significant trend favoring methenamine hippurate over other agents for the prevention of rUTIs [54]. The authors concluded that further research is needed to reliably assess the utility of this agent in prophylaxis [54]. A retrospective study from 2019 evaluated methenamine hippurate as a well-tolerated compound that rarely causes adverse effects [55]. A recent meta-analysis demonstrated methenamine hippurate as a cost-effective and well-tolerated alternative to antibiotics [56]. However, it also underscored the necessity for larger, rigorously designed randomized controlled trials to validate these findings and strengthen the evidence base [56].

Estrogens

Under physiological conditions, the distal urethra and periurethral area are covered with vaginal secretions rich in microorganisms, predominantly composed of bacteria from the genus *Lactobacillus* [57]. The vaginal microbiome in menopausal women undergoes significant restructuring, characterized by a decline in *Lactobacillus* species and their replacement by intestinal organisms including *Escherichia coli* [58, 59]. This change is linked to decreased estrogen levels, which lead to an increase in vaginal pH [59]. A Cochrane review by Perrotta et al. demonstrated that vaginal estrogen therapy reduces the incidence of UTIs, whereas oral estrogens shows no comparable effect [60]. Similar conclusions were reported by a 2021 meta-analysis of randomized controlled trials, which states that vaginal estrogen significantly reduces the recurrences of UTIs and represents a safe therapy for postmenopausal women [61]. Topical estrogen therapy constitutes a cost-effective approach that has been demonstrated to significantly decrease healthcare costs related to the management of rUTIs [62].

Vaccines

OM-89 (Uro-Vaxom) is an oral vaccine containing a lyophilized lysate derived from 18 uropathogenic strains of *Escherichia coli* [63]. A 2020 retrospective study showed that a 3-month regimen of 6 mg Uro-Vaxom, followed by three booster doses administered over 10 days within the same year, significantly reduced the frequency of recurrences in patients with a prior history of rUTIs [64]. A recent systematic review evaluated the efficacy of vaccines including Uro-Vaxom, Uromune, Solco-Urovac and ExPEC4V in the prevention of rUTIs [65]. The vaccines have demonstrated substantial preventive potential predominantly in short-term prophylaxis, with adverse events reported infrequently and generally characterized as mild [65]. Another study demonstrated the efficacy of the StroVac vaccine, showing fewer adverse effects compared to nitrofurantoin [66]. StroVac also provided superior long-term outcomes, with 79.3% of patients remaining recurrence-free in the second year versus 59.2% in the nitrofurantoin group [66].

Conclusions

Recurrent urinary tract infections continue to pose a therapeutic challenge due to their high incidence, recurrence, and the risks associated with long-term antibiotic use. Non-antibiotic preventive measures, including behavioral and dietary modifications, hold significant value in reducing infection frequency, especially when tailored to individual risk profiles. Among these, adequate hydration, postcoital voiding, and dietary improvements are simple yet effective strategies. Vaginal estrogen therapy is well-supported for postmenopausal women, while cranberry products and probiotics show moderate efficacy across populations. Methenamine hippurate may serve as a safe alternative, though more robust comparative data are needed. D-mannose and UTI vaccines offer promise but require further validation. Integrating non-antibiotic options into clinical practice can reduce antibiotic dependency and improve quality of life for patients with rUTIs.

Disclosures:

Author's contribution

Conceptualization, Martyna Różańska and Michał Robak; methodology, Martyna Różańska and Marcin Płonka; software, not applicable; check, Maciej Dudziński and Bartłomiej Kusy; formal analysis, Agnieszka Bajkacz and Martyna Różańska; investigation, Martyna Różańska, Michał Robak, Marcin Płonka and Agnieszka Bajkacz; resources, not applicable; data curation, Martyna Różańska and Maciej Dudziński; writing - rough preparation, Martyna Różańska, Hanna Ćwirko and Karolina Niewola; writing - review and editing, Martyna Różańska and Michał Robak; visualization, Agnieszka Bajkacz, Maciej Dudziński and Bartłomiej Kusy; supervision, Martyna Różańska and Hanna Ćwirko; project administration, Martyna Różańska; receiving funding, not applicable

All authors have read and agreed with the published version of the manuscript.

Funding Statement: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgements: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

List of abbreviations

UTIs - Urinary tract infections

rUTIs - Recurrent urinary tract infections

PACs - Proanthocyanidins

REFERENCES

1. Öztürk R, Murt A. Epidemiology of urological infections: a global burden. *World J Urol.* 2020;38(11):2669-2679. doi:10.1007/s00345-019-03071-4
2. Car J. Urinary tract infections in women: diagnosis and management in primary care. *BMJ.* 2006;332(7533):94-97. doi:10.1136/bmj.332.7533.94
3. Bertoni G, Pessacq P, Guerrini MG, et al. Etiología y resistencia a antimicrobianos de la infección no complicada del tracto urinario [Etiology and antimicrobial resistance of uncomplicated urinary tract infections]. *Medicina (B Aires).* 2017;77(4):304-308.
4. Guliciuc M, Porav-Hodade D, Mihailov R, et al. Exploring the Dynamic Role of Bacterial Etiology in Complicated Urinary Tract Infections. *Medicina (Kaunas).* 2023;59(9):1686. Published 2023 Sep 20. doi:10.3390/medicina59091686
5. Neal DE Jr. Complicated urinary tract infections. *Urol Clin North Am.* 2008;35(1):13-v. doi:10.1016/j.ucl.2007.09.010
6. Besharati F, Rafiee F, Jalalifar S, et al. A systematic review and meta-analysis of urinary tract infection, frequency of IS elements and MDR isolates retrieved from adult patients. *Gene Rep.* 2021;23:101072. doi:10.1016/j.genrep.2021.101072
7. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. *Dis Mon.* 2003;49(2):53-70. doi:10.1067/mda.2003.7
8. Aggarwal N, Leslie SW. Recurrent Urinary Tract Infections. In: StatPearls. Treasure Island (FL): StatPearls Publishing; January 20, 2025.
9. EAU Guidelines. Edn. presented at the EAU Annual Congress Madrid, Spain 2025. ISBN 978-94-92671-29-5
10. Albert X, Huertas I, Pereiró II, Sanfeliú J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. *Cochrane Database Syst Rev.* 2004;2004(3):CD001209. doi:10.1002/14651858.CD001209.pub2
11. Parry CM, Taylor A, Williams R, Lally H, Corbett HJ. Antimicrobial resistance of breakthrough urinary tract infections in young children receiving continual antibiotic prophylaxis. *Eur J Pediatr.* 2023;182(9):4087-4093. doi:10.1007/s00431-023-05087-w
12. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary reference values for water. *EFSA Journal* 2010; 8(3):1459. [48 pp.]. doi:10.2903/j.efsa.2010.1459.
13. Perrier ET, Armstrong LE, Bottin JH, et al. Hydration for health hypothesis: a narrative review of supporting evidence. *Eur J Nutr.* 2021;60(3):1167-1180. doi:10.1007/s00394-020-02296-z
14. Hooton TM, Vecchio M, Iroz A, et al. Effect of Increased Daily Water Intake in Premenopausal Women With Recurrent Urinary Tract Infections: A Randomized Clinical Trial. *JAMA Intern Med.* 2018;178(11):1509-1515. doi:10.1001/jamainternmed.2018.4204
15. Zemdegs J, Iroz A, Vecchio M, Roze S, Lotan Y. Water intake and recurrent urinary tract infections prevention: economic impact analysis in seven countries. *BMC Health Serv Res.* 2023;23(1):1197. Published 2023 Nov 3. doi:10.1186/s12913-023-10234-y
16. Persad S, Watermeyer S, Griffiths A, Cherian B, Evans J. Association between urinary tract infection and postmicturition wiping habit. *Acta Obstet Gynecol Scand.* 2006;85(11):1395-1396. doi:10.1080/00016340600936977
17. Akaishi T. Post-Toilet Wiping Style Is Associated With the Risk of Urinary Tract Infection in Women. *Cureus.* 2024;16(4):e58107. Published 2024 Apr 12. doi:10.7759/cureus.58107
18. Foxman B, Frerichs RR. Epidemiology of urinary tract infection: I. Diaphragm use and sexual intercourse. *Am J Public Health.* 1985;75(11):1308-1313. doi:10.2105/ajph.75.11.1308
19. Elster AB, Lach PA, Roghmann KJ, McAnarney ER. Relationship between frequency of sexual intercourse and urinary tract infections in young women. *South Med J.* 1981;74(6):704-708. doi:10.1097/00007611-198106000-00018
20. Foxman B, Frerichs RR. Epidemiology of urinary tract infection: II. Diet, clothing, and urination habits. *Am J Public Health.* 1985;75(11):1314-1317. doi:10.2105/ajph.75.11.1314
21. Vyas S, Sharma P, Srivastava K, Nautiyal V, Shrotriya VP. Role of Behavioural Risk Factors in Symptoms Related to UTI Among Nursing Students. *J Clin Diagn Res.* 2015;9(9):LC15-LC18. doi:10.7860/JCDR/2015/10995.6547
22. Kontiokari T, Laitinen J, Järvi L, Pokka T, Sundqvist K, Uhari M. Dietary factors protecting women from urinary tract infection. *Am J Clin Nutr.* 2003;77(3):600-604. doi:10.1093/ajcn/77.3.600
23. Du Y, Sui X, Bai Y, et al. Dietary influences on urinary tract infections: unraveling the gut microbiota connection. *Food Funct.* 2024;15(19):10099-10109. Published 2024 Sep 30. doi:10.1039/d4fo03271c
24. Saraiva A, Raheem D, Roy PR, et al. Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health. *Nutrients.* 2025;17(6):986. Published 2025 Mar 11. doi:10.3390/nu17060986

25. Mititelu M, Olteanu G, Neacșu SM, et al. Incidence of Urinary Infections and Behavioral Risk Factors. *Nutrients*. 2024;16(3):446. Published 2024 Feb 2. doi:10.3390/nu16030446
26. Nemzer BV, Al-Taher F, Yashin A, Revelsky I, Yashin Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. *Molecules*. 2022; 27(5):1503. <https://doi.org/10.3390/molecules27051503>
27. Gupta K, Chou MY, Howell A, Wobbe C, Grady R, Stapleton AE. Cranberry products inhibit adherence of p-fimbriated *Escherichia coli* to primary cultured bladder and vaginal epithelial cells. *J Urol*. 2007;177(6):2357-2360. doi:10.1016/j.juro.2007.01.114
28. Faggian M, Bernabè G, Valente M, et al. Characterization of PACs profile and bioactivity of a novel nutraceutical combining cranberry extracts with different PAC-A oligomers, D-mannose and ascorbic acid: An in vivo/ex vivo evaluation of dual mechanism of action on intestinal barrier and urinary epithelium. *Food Res Int*. 2021;149:110649. doi:10.1016/j.foodres.2021.110649
29. Feldman M, Tanabe S, Howell A, Grenier D. Cranberry proanthocyanidins inhibit the adherence properties of *Candida albicans* and cytokine secretion by oral epithelial cells. *BMC Complement Altern Med*. 2012;12:6. Published 2012 Jan 16. doi:10.1186/1472-6882-12-6
30. Ben Lagha A, Howell A, Grenier D. Cranberry Proanthocyanidins Neutralize the Effects of Aggregatibacter actinomycetemcomitans Leukotoxin. *Toxins (Basel)*. 2019;11(11):662. Published 2019 Nov 14. doi:10.3390/toxins11110662
31. Moro C, Phelps C, Veer V, et al. Cranberry Juice, Cranberry Tablets, or Liquid Therapies for Urinary Tract Infection: A Systematic Review and Network Meta-analysis. *Eur Urol Focus*. 2024;10(6):947-957. doi:10.1016/j.euf.2024.07.002
32. Stonehouse W, Benassi-Evans B, Bednarz J, Vincent AD. Whole cranberry fruit powder supplement reduces the incidence of culture-confirmed urinary tract infections in females with a history of recurrent urinary tract infection: A 6-month multicenter, randomized, double-blind, placebo-controlled trial. *Am J Clin Nutr*. 2025;121(4):932-941. doi:10.1016/j.ajcnut.2025.01.022
33. Jepson RG, Mihaljevic L, Craig JC. Cranberries for treating urinary tract infections. *Cochrane Database Syst Rev*. 2023;12(12):CD001322. Published 2023 Dec 14. doi:10.1002/14651858.CD001322.pub2
34. American Urological Association. Recurrent Uncomplicated Urinary Tract Infections in Women: AUA/CUA/SU FU Guideline (2022). Accessed at auanet.org/guidelines-and-quality/guidelines/recurrent-utiLink to External Link Policy on September 20, 2023.
35. Marelli G, Papaleo E, Ferrari A. Lactobacilli for prevention of urogenital infections: a review. *Eur Rev Med Pharmacol Sci*. 2004;8(2):87-95.
36. Neugent ML, Hulyalkar NV, Nguyen VH, Zimmern PE, De Nisco NJ. Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection. *mBio*. 2020;11(2):e00218-20. Published 2020 Apr 28. doi:10.1128/mBio.00218-20
37. Andreu A, Stapleton AE, Fennell CL, Hillier SL, Stamm WE. Hemagglutination, adherence, and surface properties of vaginal *Lactobacillus* species. *J Infect Dis*. 1995;171(5):1237-1243. doi:10.1093/infdis/171.5.1237
38. Osset J, Bartolomé RM, García E, Andreu A. Assessment of the capacity of *Lactobacillus* to inhibit the growth of uropathogens and block their adhesion to vaginal epithelial cells. *J Infect Dis*. 2001;183(3):485-491. doi:10.1086/318070
39. Falagas ME, Betsi GI, Tokas T, Athanasiou S. Probiotics for prevention of recurrent urinary tract infections in women: a review of the evidence from microbiological and clinical studies. *Drugs*. 2006;66(9):1253-1261. doi:10.2165/00003495-200666090-00007
40. Stapleton AE, Au-Yeung M, Hooton TM, et al. Randomized, placebo-controlled phase 2 trial of a *Lactobacillus crispatus* probiotic given intravaginally for prevention of recurrent urinary tract infection. *Clin Infect Dis*. 2011;52(10):1212-1217. doi:10.1093/cid/cir183
41. Gupta V, Mastromarino P, Garg R. Effectiveness of Prophylactic Oral and/or Vaginal Probiotic Supplementation in the Prevention of Recurrent Urinary Tract Infections: A Randomized, Double-Blind, Placebo-Controlled Trial. *Clin Infect Dis*. 2024;78(5):1154-1161. doi:10.1093/cid/ciad766
42. Abdullatif VA, Sur RL, Eshaghian E, et al. Efficacy of Probiotics as Prophylaxis for Urinary Tract Infections in Premenopausal Women: A Systematic Review and Meta-Analysis. *Cureus*. 2021;13(10):e18843. Published 2021 Oct 17. doi:10.7759/cureus.18843
43. Schwenger EM, Tejani AM, Loewen PS. Probiotics for preventing urinary tract infections in adults and children. *Cochrane Database Syst Rev*. 2015;2015(12):CD008772. Published 2015 Dec 23. doi:10.1002/14651858.CD008772.pub2
44. Smith AL, Brown J, Wyman JF, Berry A, Newman DK, Stapleton AE. Treatment and Prevention of Recurrent Lower Urinary Tract Infections in Women: A Rapid Review with Practice Recommendations. *J Urol*. 2018;200(6):1174-1191. doi:10.1016/j.juro.2018.04.088
45. Hu X, Shi Y, Zhang P, Miao M, Zhang T, Jiang B. d-Mannose: Properties, Production, and Applications: An Overview. *Compr Rev Food Sci Food Saf*. 2016;15(4):773-785. doi:10.1111/1541-4337.12211

46. Schaeffer AJ, Amundsen SK, Jones JM. Effect of carbohydrates on adherence of *Escherichia coli* to human urinary tract epithelial cells. *Infect Immun.* 1980;30(2):531-537. doi:10.1128/iai.30.2.531-537.1980

47. Wagenlehner F, Lorenz H, Ewald O, Gerke P. Why d-Mannose May Be as Efficient as Antibiotics in the Treatment of Acute Uncomplicated Lower Urinary Tract Infections-Preliminary Considerations and Conclusions from a Non-Interventional Study. *Antibiotics (Basel)*. 2022;11(3):314. Published 2022 Feb 25. doi:10.3390/antibiotics11030314

48. Kranjčec B, Papeš D, Altarac S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. *World J Urol.* 2014;32(1):79-84. doi:10.1007/s00345-013-1091-6

49. Salvatore S, Ruffolo AF, Stabile G, Casiraghi A, Zito G, De Seta F. A Randomized Controlled Trial Comparing a New D-Mannose-based Dietary Supplement to Placebo for the Treatment of Uncomplicated *Escherichia coli* Urinary Tract Infections. *Eur Urol Focus.* 2023;9(4):654-659. doi:10.1016/j.euf.2022.12.013

50. Hayward G, Mort S, Hay AD, et al. d-Mannose for Prevention of Recurrent Urinary Tract Infection Among Women: A Randomized Clinical Trial. *JAMA Intern Med.* 2024;184(6):619-628. doi:10.1001/jamainternmed.2024.0264

51. Cooper TE, Teng C, Howell M, Teixeira-Pinto A, Jaure A, Wong G. D-mannose for preventing and treating urinary tract infections. *Cochrane Database Syst Rev.* 2022;8(8):CD013608. Published 2022 Aug 30. doi:10.1002/14651858.CD013608.pub2

52. Lo TS, Hammer KD, Zegarra M, Cho WC. Methenamine: a forgotten drug for preventing recurrent urinary tract infection in a multidrug resistance era. *Expert Rev Anti Infect Ther.* 2014;12(5):549-554. doi:10.1586/14787210.2014.904202

53. Lee BS, Bhuta T, Simpson JM, Craig JC. Methenamine hippurate for preventing urinary tract infections. *Cochrane Database Syst Rev.* 2012;10(10):CD003265. Published 2012 Oct 17. doi:10.1002/14651858.CD003265.pub3

54. Bakhit M, Krzyzaniak N, Hilder J, Clark J, Scott AM, Mar CD. Use of methenamine hippurate to prevent urinary tract infections in community adult women: a systematic review and meta-analysis. *Br J Gen Pract.* 2021;71(708):e528-e537. Published 2021 Jun 24. doi:10.3399/BJGP.2020.0833

55. Hollyer I, Varias F, Ho B, Ison MG. Safety and efficacy of methenamine hippurate for the prevention of recurrent urinary tract infections in adult renal transplant recipients: A single center, retrospective study. *Transpl Infect Dis.* 2019;21(3):e13063. doi:10.1111/tid.13063

56. Hobaica NC, De Oliveira GC, Porto BC, et al. Effectiveness of methenamine hippurate in preventing urinary tract infections: an updated systematic review, meta-analysis and trial sequential analysis of randomized controlled trials. *BMC Urol.* 2025;25(1):30. Published 2025 Feb 15. doi:10.1186/s12894-025-01708-8

57. Silva C, Rey R, Elena Nader-Macías M. Effects of estrogen administration on the colonization capability of lactobacilli and *Escherichia coli* in the urinary tracts of mice. *Methods Mol Biol.* 2004;268:387-399. doi:10.1385/1-59259-766-1:387

58. Muhleisen AL, Herbst-Kralovetz MM. Menopause and the vaginal microbiome. *Maturitas.* 2016;91:42-50. doi:10.1016/j.maturitas.2016.05.015

59. Farage, M.A., Miller, K.W., Song, Y., Sobel, J. (2017). The Vaginal Microbiota in Menopause. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_84

60. Perrotta C, Aznar M, Mejia R, Albert X, Ng CW. Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. *Cochrane Database Syst Rev.* 2008;(2):CD005131. Published 2008 Apr 16. doi:10.1002/14651858.CD005131.pub2

61. Chen YY, Su TH, Lau HH. Estrogen for the prevention of recurrent urinary tract infections in postmenopausal women: a meta-analysis of randomized controlled trials. *Int Urogynecol J.* 2021;32(1):17-25. doi:10.1007/s00192-020-04397-z

62. Houston CG, Azar WS, Huang SS, Rubin R, Dorris CS, Sussman RD. A Cost Savings Analysis of Topical Estrogen Therapy in Urinary Tract Infection Prevention Among Postmenopausal Women. *Urol Pract.* 2024;11(2):257-266. doi:10.1097/UPJ.0000000000000513

63. Bessler WG, Puce K, vor dem Esche U, Kirschning C, Huber M. Immunomodulating effects of OM-89, a bacterial extract from *Escherichia coli*, in murine and human leukocytes. *Arzneimittelforschung.* 2009;59(11):571-577. doi:10.1055/s-0031-1296446

64. Brodie A, El-Taji O, Jour I, Foley C, Hanbury D. A Retrospective Study of Immunotherapy Treatment with Uro-Vaxom (OM-89®) for Prophylaxis of Recurrent Urinary Tract Infections. *Curr Urol.* 2020;14(3):130-134. doi:10.1159/000499248

65. Prattley S, Geraghty R, Moore M, Somanı BK. Role of Vaccines for Recurrent Urinary Tract Infections: A Systematic Review. *Eur Urol Focus.* 2020;6(3):593-604. doi:10.1016/j.euf.2019.11.002

66. Nestler S, Grüne B, Schilchegger L, Suna A, Perez A, Neisius A. Efficacy of vaccination with StroVac for recurrent urinary tract infections in women: a comparative single-centre study. *Int Urol Nephrol.* 2021;53(11):2267-2272. doi:10.1007/s11255-021-02987-4