

International Journal of Innovative Technologies in Social Science

e-ISSN: 2544-9435

Scholarly Publisher RS Global Sp. z O.O.

ISNI: 0000 0004 8495 2390

Dolna 17, Warsaw, Poland 00-773 +48 226 0 227 03 editorial office@rsglobal.pl

ARTICLE TITLE	THE INTERRELATIONSHIP BETWEEN THE ORAL MICROBIOME AND RHEUMATOID ARTHRITIS: EXPLORING MUTUAL INFLUENCES AND CLINICAL IMPLICATIONS
DOI	https://doi.org/10.31435/ijitss.4(48).2025.4130
RECEIVED	29 September 2025
ACCEPTED	24 November 2025
PUBLISHED	26 November 2025
LICENSE	The article is licensed under a Creative Commons Attribution 4.0 International License.

© The author(s) 2025.

This article is published as open access under the Creative Commons Attribution 4.0 International License (CC BY 4.0), allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

THE INTERRELATIONSHIP BETWEEN THE ORAL MICROBIOME AND RHEUMATOID ARTHRITIS: EXPLORING MUTUAL INFLUENCES AND CLINICAL IMPLICATIONS

Hanna Adamska (Corresponding Author, Email: adamskahanna@outlook.com)

T. Marciniak Lower Silesian Specialist Hospital – Center of Emergency Medicine, ul. Gen. Augusta Emila Fieldorfa 2, 54-049 Wrocław, Poland

ORCID ID: 0009-0007-1338-1382

Natalia Klepacz

Lower Silesian Center for Oncology, Pulmonology and Hematology, plac Hirszfelda 12, 53-413 Wrocław, Poland

ORCID ID: 0009-0007-7179-4601

Marta Kaus

Lower Silesian Center of Oncology, Pulmonology and Hematology in Wrocław, plac Hirszfelda 12, 53-413 Wrocław, Poland

ORCID ID: 0009-0004-3935-0304

Karina Grzesik

T. Marciniak Lower Silesian Specialist Hospital – Center of Emergency Medicine, ul. Gen. A. E. Fieldorfa 2, 54-049 Wrocław, Poland

ORCID ID: 0009-0006-1362-8843

Hubert Sawczuk

Jan Mikulicz-Radecki University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland ORCID ID: 0009-0003-2860-9002

Katarzyna Pilarczyk

T. Marciniak Lower Silesian Specialist Hospital – Center of Emergency Medicine, ul. Gen. Augusta Emila Fieldorfa 2, 54-049 Wrocław, Poland ORCID ID: 0009-0002-4942-3656

Weronika Ewa Nowak

Jan Mikulicz-Radecki University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland ORCID ID: 0009-0006-8445-2072

Aleksandra Rabęda

SP ZOZ MSWiA, ul. Kronikarza Galla 25, 30-053 Kraków, Poland ORCID ID: 0009-0008-1701-6494

Marta Malicka

Jan Mikulicz-Radecki University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland ORCID ID: 0009-0009-1955-6512

Zuzanna Cudziło

Jan Mikulicz-Radecki University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland ORCID ID: 0009-0000-9666-3156

ABSTRACT

Introduction and objective: Periodontitis (PD) is caused by dysbiosis of the oral microbiome (OMB). The prevalence of PD is increased in RA patients. Both conditions have the ability to activate common inflammatory pathways. The OMB shift contributes to more severe course of PD and RA. This paper aims to summarize the impact of OMB on chronic inflammation in the pathogenesis of PD and RA.

Description of the state of knowledge: The OMB can influence chronic inflammation and protein citrullination. The presence of antibodies against citrullinated peptides (ACPA) correlates with an increased incidence and severity of periodontitis. While numerous studies have reported a relationship between the OMB, PD and RA, the role of specific bacteria in RA remains unclear.

Methodology: A literature review was conducted using two databases - PubMed and Google Scholar - with search terms such as "oral microbiome", "rheumatoid arthritis", "periodontal health", "oral microbiota", "periodontal disease". Articles published within the last eight years were prioritized.

Conclusions: PD is more prevalent and severe particularly in ACPA-positive RA patients. Alterations in OMB are associated with systemic inflammation, contributing to RA progression. and worsening periodontal conditions. Periodontal treatment shows a potential to reduce RA activity, emphasizing the importance of dental care in RA. Anti-inflammatory treatments may restore oral homeostasis. Targeting the OMB offers a potential for managing RA and PD. Further research is needed to establish guidelines for personalized therapies and prophylaxis.

KEYWORDS

Oral Microbiome, Rheumatoid Arthritis, Periodontal Disease, Periodontal Health, Oral Microbiota

CITATION

Hanna Adamska, Natalia Klepacz, Marta Kaus, Karina Grzesik, Hubert Sawczuk, Katarzyna Pilarczyk, Weronika Ewa Nowak, Aleksandra Rabęda, Marta Malicka, Zuzanna Cudziło. (2025) The Interrelationship Between the Oral Microbiome and Rheumatoid Arthritis: Exploring Mutual Influences and Clinical Implications. *International Journal of Innovative Technologies in Social Science*. 4(48). doi: 10.31435/ijitss.4(48).2025.4130

COPYRIGHT

© The author(s) 2025. This article is published as open access under the Creative Commons Attribution 4.0 International License (CC BY 4.0), allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

Introduction

The oral microbiome (OMB) comprises a complex and diverse community of microorganisms inhabiting the oral cavity. Periodontal health relies on the maintaining host—microbe homeostasis in the periodontium. Disruption of this equilibrium—due to microbial imbalances or host immunoregulatory defects—triggers a pathologic cycle leading to periodontal disease [1]. Two primary forms of periodontal disease are recognized: gingivitis and periodontitis (PD). PD is a chronic dysbiotic inflammatory condition associated with altered plaque biofilms and characterized by the progressive destruction of the tooth-supporting structures. It manifests as alveolar bone loss, periodontal pocketing, gingival bleeding, and, if untreated, may result in tooth loss [2, 3].

Rheumatoid arthritis (RA) is a prevalent chronic inflammatory disease leading to cartilage and bone damage, often accompanied by extra-articular manifestations, such as rheumatoid nodules, pulmonary involvement, vasculitis, and systemic comorbidities like atherosclerosis, which elevate cardiovascular risk [4]. RA affects 0.5–1% of adults, predominantly women aged 50–60. Its etiology remains unclear, but involves genetic predispositions and environmental factors that contribute to a pre-RA state, marked by the presence of antibodies against citrullinated peptides (ACPA) and/or rheumatoid factor (RF), immune tolerance disruption, and abnormal cytokine signaling [5]. ACPA and RF are believed to promote inflammation through complement activation and immune complex formation, making ACPA a marker of worse disease progression [5, 6, 7]. Environmental factors such as smoking, bacterial periodontitis, coffee consumption, and exposure to silica dust have been identified as risk factors for RA, influencing protein citrullination [5].

A higher prevalence of periodontitis in individuals with RA compared to controls was suggested. The presence of ACPA and RF correlates with an increased incidence and severity of periodontitis, indicating a more aggressive disease course in ACPA-positive patients [8]. This association has prompted investigations

into the role of oral microbiota, particularly *Porphyromonas gingivalis*, in RA pathogenesis. This bacterium exhibits proteinase and collagenase activities, promoting autoantigen formation and immune dysregulation, thereby linking periodontal infections to RA [9]. Studies have shown distinct subgingival microbial profiles in RA patients with moderate to severe periodontitis compared to those with no or mild disease. Species such as *Desulfobulbus sp.*, *Prevotella sp.*, and *Tannerella sp.* are abundant in severe cases, whereas *Prevotella sp.* and *Porphyromonas sp.* dominate in mild cases [8]. Notably, no significant difference in the prevalence of *P. gingivalis* was observed across severity levels [7].

This paper aims to summarize the relationship between periodontal health and rheumatoid arthritis, reviewing the impact of oral microbiota on the prevalence and severity of RA symptoms.

Methodology

For the purpose of this article a literature review was conducted using two databases - PubMed and Google Scholar - with search terms such as "oral microbiome", "rheumatoid arthritis", "periodontal health", "oral microbiota", "periodontal disease". Articles published within the last eight years were prioritized.

1. Rheumatoid arthritis and periodontitis

The connection between RA and PD has been supported by numerous studies [8–11]. Although they have different etiology - autoimmune versus infectious, both diseases share genetic similarities, risk factors, the capability to activate homogeneous inflammatory pathways and the process of bone destruction [12]. Regarding genetics, both RA and PD show high frequencies of HLA-DR4 tissue antigens [9]. Mutual risk factors, such as smoking, may also enhance protein citrullination, which plays an important role in the pathogenesis of both diseases [1, 2, 5]. Several studies have reported an increased prevalence of periodontitis in RA patients compared to controls [10, 12, 13]. Based on similarities between the two diseases, a "two-hit" model was proposed, suggesting that the oral microbiome (first "hit"), through interaction with bonedestructive diseases (second "hit") in another location in the body (e.g. joint capsule), may co-induce periodontitis [14]. Studies in rodents have shown that chronic systemic inflammation in RA can determine the susceptibility to periodontitis in RA patients [12, 15]. This case-control study [10], found a significantly higher prevalence of PD in RA patients (71.5%) compared to osteoarthritis (OA) controls (51.6%). However, no significant difference in periodontal disease severity was observed between RA and OA group. While RA activity, measured by DAS28-ESR, showed no correlation with periodontitis severity, disease duration and activity correlated with tooth loss [10]. These results are consistent with a similar tendency reported by Disale et al. [16], where a 45% prevalence of PD in RA patients versus 33% in OA patients was reported. Interestingly, Miculus et al. [11] reported that PD in RA patients is associated with higher swollen joint counts, higher DAS28-CRP scores, and greater radiographic joint damage. Consistently, this study found that the comorbidity of RA and PD was associated with higher RA activity indicators - including DAS28-CRP, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and joint count - compared to the RA without PD group, regardless of the treatment applied. Moreover, patients with higher RA activity (DAS28-CRP) exhibited worse periodontal conditions, compared to those with low RA activity [17]. Interestingly, Eriksson et al. [8] established no link between periodontitis severity and RA disease activity - measured as DAS28, health assessment (HAQ-score) and CRP levels, while suggesting that ACPA-positivity correlates with moderate to severe periodontitis. Existing research confirms that ACPA-positive RA patients experience more severe periodontitis than their ACPA-negative counterparts, regardless of anti-inflammatory medication use or the presence of subgingival P. gingivalis [8, 10, 11]. A similar outcome was observed among U.S. veterans with RA regarding RF-positivity, in whom RF titers were positively associated with periodontitis severity [11, 16, 18]. Furthermore, RF-positive RA patients exhibited greater probing pocket depths and gingival recession compared to seronegative RA patients [10]. These observations suggest an increased susceptibility to periodontal diseases in seropositive patients.

The impact of RA activity on the severity of periodontitis remains ambiguous. However, evidence indicates that periodontitis may act as a trigger, exacerbating RA symptoms. This hypothesis could be supported by findings from Sher et al., who reported a high prevalence of advanced PD in patients with new-onset RA, despite their young age and limited smoking history [19]. The presence of PD at the time of new-onset RA diagnosis suggests that it is more likely a trigger of systemic inflammation, than a consequence of RA [20].

2. Autoantibodies and protein citrullination in RA and PD

2.1 RA Pathogenesis and protein citrullination

Antibodies against citrullinated peptides (ACPA) and rheumatoid factor (RF) are the predominant autoantibodies detected in the serum of patients with RA. RF are characterized by higher diagnostic sensitivity, however lower specificity compared to ACPA [21]. Based on current knowledge, ACPA can be detected at high titers during the pre-RA stage—that is, in individuals at high risk of developing RA but who do not yet meet the diagnostic criteria. Therefore, ACPA are considered early markers of the disease and predictors of a more severe course and rapid progression. ACPA target proteins such as: filaggrin, fibrinogen, vimentin, α enolase, inducing the citrullination, which is a post-translational modification of arginine residues, catalyzed by peptidylarginine deiminase (PAD) enzymes. The binding of ACPA to citrullinated proteins can activate the complement system, leading to the release of pro-inflammatory cytokines including tumor necrosis factor a (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). This inflammatory cascade stimulates osteoclasts and fibroblast-like synoviocytes (FLS), promoting joint inflammation and damage [6, 7]. Additionally, ACPA interaction with osteoclasts induces the secretion of interleukin-8 (IL-8), contributing to bone erosion and associated pain. Collectively, these pro-inflammatory processes in the synovium and synovial fluid accelerate the progression of RA [22]. It has been observed that both RA and periodontitis have a potential to alter a local and systemic cytokine profile. One study [23] aimed to explore the association of levels of interleukin -6, -10, -17, and -23 with RA symptoms, applied treatment and coexisting PD. The results indicated that elevated IL-10 levels were associated with prolonged morning stiffness and reduced serological markers (ACPA, RA). Conversely, higher IL-17 levels were interpreted as indicative of increased RA activity, no significant association between IL-17 titers and dental health was confirmed. Elevated IL-23 levels were observed in patients with higher RF titers and greater periodontal disease severity. Furthermore, the study demonstrated leflunomide's potential to modulate Il-23 pathways, thereby reducing periodontal burden. Notably, no significant differences were found in serum IL-6 levels. Additionally, Eriksson et al. [8] identified elevated serum and salivary levels of APRIL, a TNF-receptor family member involved in B-cell maturation, in RA patients with moderate or severe PD. While these findings highlight some associations, the authors underscore the need for further research, particularly concerning the complex interplay between disease activity and medication effects on periodontal burden [23]. It is noteworthy to mention that ACPA positivity is influenced not only by joint disease and genetic factors, but also by independent risk factors such as older age, female sex, and smoking [24-26]. Interestingly, a review involving over 40,000 participants did not confirm a definitive link between periodontitis and increased ACPA positivity. However, this conclusion was based on self-reported questionnaires, which are less reliable than studies involving oral examinations conducted by experienced clinicians. [24].

2.2 Role of *P. gingivalis* in protein citrullination

It has been suggested that *P. gingivalis* - the key bacteria involved in the pathogenesis of PD - may induce citrullination of both its own and host proteins, potentially triggering the development of RA [27-30]. *P. gingivalis* expresses peptidyl-arginine deiminase (PPAD) and gingipains (cysteine-like proteases), leading to hipercitrullination and disrupting the host's immune signaling network. In this process occurs the release of ammonia, increasing the local pH, creating a favorable environment for *P. gingivalis* survival in periodontal pockets. [31].

Both human PADs and citrullinated proteins are present in the oral mucosa and the periodontal epithelium, facilitating physiological citrullination in these tissues. Mucosal inflammation caused by PD can enable oral bacteria like P. gingivalis to translocate to distant sites, including joints. Additionally, *P. gingivalis* α-enolase shares 82% homology with human α-enolase, which could lead to potential cross-reactivity. In periodontitis, increased citrullination of bacterial proteins may compromise immunotolerance to structurally similar host proteins, potentially mimicking synovial antigens and resulting in the production of ACPA in genetically susceptible individuals. This hypothesis could explain the observed correlation between elevated ACPA titers in RA patients and the presence of PD [32, 33]. Beyond PPAD expression, *P. gingivalis* induces high levels of pro-inflammatory cytokines (e.g., IL-1β, IL-6) via peripheral CD4+ T helper cells and degrades transport proteins such as albumin, lactoferrin, exacerbating inflammation and tissue damage, particularly in aggressive forms of periodontitis [9, 34]. Moreover, PPAD-mediated citrullination of histones influences the formation of neutrophil extracellular traps (NETs), structures aimed at trapping pathogens, suggesting a role for *P. gingivalis* in modulating this defense mechanism [31]. In a murine study, chronic oral infection with *P. gingivalis* prior to the onset of arthritis influenced RA progression through Th17-related pathways [35].

Similarly, in another mouse model, pre-existing periodontitis exacerbated arthritis severity and accelerated disease progression [36]. Engström et al. [37] noted increased citrullination and PAD expression (PAD2 and PAD4) in gingival connective tissue of periodontitis patients, independent of *P. gingivalis* or leukotoxin from *A. actinomycetemcomitans*. Sher et al. [19] observed that *P. gingivalis* is linked with PD severity; however, this association is not unique to RA and does not correlate with ACPA titers. Their study found similar *P. gingivalis* exposure rates in RA patients (78.4%) and controls (83.3%). Cheng et al. [38] have reported that in their study, ACPA-positive individuals at risk of developing RA, showed increased abundance of P. gingivalis and dysbiotic subgingival microbiomes compared to healthy controls. Additionally among ACPA-positive atrisk RA group, periodontally healthy individuals exhibited significantly lower microbial richness compared to healthy controls and early RA group.

3. The oral microbiome (OMB)

3.1 Oral microbiome in periodontitis pathogenesis

The homeostasis of the OMB depends on various factors, including oral hygiene, dietary habits, smoking, gingival inflammation, genetic differences, salivary gland dysfunction and systemic conditions such as diabetes, cardiovascular diseases and connective tissue diseases [39]. When periodontal health is preserved, the OMB predominantly consists of Gram-positive aerobic bacteria, which help maintain the microbiome balance [33]. Sher et al. [19] identified that the healthy OMB is dominated by bacterial phyla such as Bacteroidetes, Firmicutes (Bacillota), Actinobacteria, Proteobacteria (Pseudomonadota), Fusobacteria, Spirochaetes and TM7 (Saccharibacteria). A shift to a dominance of Gram-negative anaerobes fosters local inflammation, initially manifesting as reversible gingivitis. If left untreated, gingivitis progresses to chronic periodontitis, characterized by irreversible tissue degradation. Research highlights some bacterial complexes as highly associated with chronic periodontitis, particularly the "red complex" including three species: *P. gingivalis*, *T. forsythia*, *T. denticola*. The "red complex" is positively associated with periodontal pocket depth and bleeding on probing, which are key markers of disease severity strongly linked to PD severity. Other implicated bacteria include *A. actinomycetemcomitans*, *F. alocis* and representatives of the "orange complex" such as *F. nucleatum* and *P. intermedia* [28, 33, 40].

3.2 The correlation between OMB and RA

Periodontal dysbiosis, characterized by increased microbial diversity and elevated level of bacterial species linked to periodontal disease, is frequently observed in patients with RA (*Table 1*). This dysbiosis contributes to more severe periodontitis and a worsened course of RA. Interestingly, even in RA patients without PD, a shift in the oral biofilm toward periodontitis-associated bacteria has been observed [15, 41, 42]. In RA patients, systemic inflammation accelerates the production of cytokines such as IL-17, Il-2, TNF, INF- γ [13]. Rodent studies have shown that elevated cytokines in RA, including TNF- α , IL-1, IL-6, and IL-17, can influence inflammatory cytokine levels in oral tissues. Increased salivary concentrations of IL-17, TNF- α , and IL-33, along with diminished redox potential, create an environment favorable for obligate anaerobic bacteria. This microbial shift promotes periodontitis [12, 15]. Furthermore, it has been hypothesized that oral pathogens may alter the immune response, triggering the production of ACPA and thereby inducing the development and progression of arthritis [41, 43, 44]. Collectively, these findings may explain the mutual correlation between RA and PD - both the increased susceptibility to PD in RA patients and the influence of PD on arthritis activity.

3.3 The OMB diversity in RA patients

P. gingivalis is considered one of the most important bacteria implicated in PD, however its role in RA pathogenesis remains incompletely understood. Several research groups have sought to quantify and correlate levels of antibodies against this bacterium in RA patients. Mikulus et al. [43] observed that antibodies against P. gingivalis were more frequent in RA patients than in controls, though less frequent than in patients with PD. Moreover, Anti-P. gingivalis titers correlated with ACPA and CRP levels. Hitchon et al. [44] found that antibody levels against P. gingivalis lipopolysaccharides (LPS) were higher in RA patients than in their relatives and unrelated healthy controls. Additionally, they found a positive association between ACPA and anti-P. gingivalis LPS in both RA patients and their relatives. This suggests that the immune response may occur independently of RA diagnosis. A 2017 meta-analysis confirmed that RA patients exhibited significantly higher antibody responses against P. gingivalis compared to healthy controls [45]. Ogrendik et al. [9] reported higher levels of antibodies against P. gingivalis, as well as P. intermedia, P. melaninogenica, and B. forsythus in RA patients serum compared to controls, suggesting their potential roles in RA pathogenesis. No correlation

was found regarding anti-A. actinomycetemcomitans antibodies. A 2003 study, reported elevated antibody titers against B. forsythus in the synovial fluid, while its significantly decreased serum levels in RA patients compared to those with osteoarthritis (OA). Therefore suggesting active antibody production in synovial tissue [46]. On the other hand, the study of gingival crevicular fluid (GCF) identified A. actinomycetemcomitans as the only species capable of reproducing the repertoire of citrullinated antigens in RA joints. Its major virulence factor, leukotoxin A (LtxA), induces neutrophil citrullination and dysregulation of PAD enzymes. Anti-A. actinomycetemcomitans antibodies correlated with PD severity and RA-associated autoimmunity. Notably, associations between HLA-DRB1 alleles, ACPA, and RF were observed only in RA patients exposed to A. actinomycetemcomitans, not P. gingivalis [41]. Martisson et al. [47] and Brewer et al. [48] confirmed a positive correlation between the levels of anti-LtxA antibodies in blood and saliva samples and ACPA titers in RA patients as well as in the individuals with arthritis at risk of RA. According to this knowledge, periodontal exposure to A. actinomycetemcomitans might drive immune responses that promote ACPA production, potentially leading to RA onset.

Moving forward to research using methodology based on DNA sampling, in 2016 Zhang et al. [49] highlighted the significant decrease of *Haemophilus spp.* in the saliva of RA patients, negatively associated with serum autoantibody levels. Conversely, L. salivarius levels were elevated, particularly in patients with very active RA. Among "red complex" bacteria, T. denticola exhibited the highest prevalence in patients with both RA and PD compared to either condition alone or healthy controls. Its presence increased the likelihood of ACPA positivity sixfold [17, 50]. Another study [15] highlighted the enrichment of *Prevotella spp.* in the saliva and subgingival microbiota of RA subjects. Moreover, P. copri was found to have a notable potential to induce Th17-related cytokines and is associated with Th17-mediated mucosal inflammation [51]. In a Chinese cohort, A. actinomycetemcomitans was significantly more prevalent in RA patients with PD than those without PD. Its abundance correlated with higher DAS28 scores, RF and ACPA titers., probing pocket depth and gingival index, but not with plaque index or clinical attachment loss. Therefore highlighting that A. actinomycetemcomitans infection could exacerbate both the RA symptoms and periodontitis severity in RA patients [52]. Another study showed a negative association between presence of Actinomyces spp., and positive between the abundance of F. fastidiosum, P. micra and A. geminatus and increased count of swollen and tender joints [13]. Conversely, a different study [53] established that higher ACPA titers corresponded to lower levels of Pophyromonas and Aggregatibacter, suggesting that ACPA may control the colonization of these oral bacteria with a protective effect on oral microbiome in RA patients. In new-onset RA patients (NORA), compared to chronic RA patients, a dominance of "red complex" bacteria was observed, accompanied by a decreased abundance of Corynebacterium spp. and Streptococcus spp. Interestingly Prevotella spp. and Leptotrichia spp. were present only in NORA, regardless of PD status. [19]. Various studies have confirmed the presence of an altered OMB already in early stages of RA and in at-risk of RA patients, highlighting reduced abundance of Defluviitaleaceae spp. and N. oralis, as well as enriched levels of Prevotella spp. [54], P. pleuritidis, T. denticola, P. endodontalis and F. alocis sp. [55]. Some genera were also found to correlate positively with ACPA titers. [54]. Individuals at risk of RA exhibit an oral microbiome (OMB) similar to that of early-RA patients, with an increased abundance of *Prevotella spp.* and *Veillonella spp.* in saliva from both groups compared to healthy controls [56]. Interestingly, the observation of OMB in female RA patients compared to controls, confirmed the domination of Prevotellaceae and Leptotrichiaceae and their positive correlation with ACPA positivity and clinical RA activity. Moreover, Prevotella spp. positively correlated with the RF levels, while the abundance of S. infantis showed moderate negative correlation with RF titers. Furthermore, increased levels of *Treponema spp.* and Absconditabacteriales were associated with low disease activity, while Porphyromonas spp. was more abundant in patients with moderate disease activity. High disease activity was correlated with an enrichment of Staphylococcus. [42]. In another study the RA activity has been associated with increased prevalence of Corynebacterium matruchotii, Actinomyces, Veillonella and Streptococcus, compared to RA patients in remission [57]. Interestingly, while comparing RA and osteoarthritis patients, eight oral bacterial biomarkers were identified that distinguish between the two groups. The RA group tended to exhibit the most complex bacterial community, particularly higher levels of *Prevotella* and Leptotrichia. In contrast, OA patients demonstrated increased levels of Neisseria and Haemophilus, while healthy controls showed higher abundances of Capnocytophaga and Veillonella [58]. These microbial signatures could serve as non-invasive biomarkers, aiding clinicians in distinguishing between RA and OA.

Based on the knowledge acquired so far, there is undoubtedly a relationship between the oral microbiome and rheumatoid arthritis (RA). However, it is important to remember about additional factors influencing the OMB in RA patients, such as poorer oral hygiene, increased biofilm accumulation, and sicca

syndrome. All together they contribute to periodontal inflammation and exacerbate RA symptoms [59]. Subgingival microbiota diversity varies with disease activity, anti-inflammatory drug use, and comorbidities such as diabetes and smoking. Lopez-Olivia et al. [60] analysed the subgingival biofilm in RA patients with good periodontal health, demonstrating distinct differences in the subgingival microbiota compared to healthy individuals. Certain bacterial species were more prevalent in the RA group, underlining the importance of the oral microbiome in RA development and progression. The researchers suggested targeting the OMB as a potential strategy for new RA treatments.

Table 1. The diversity of the OMB in PD, RA, new-onset RA compared to a healthy OMB.

Healthy OMB [19]	OMB in periodontitis [19, 33, 40]		OMB in RA [19, 42, 49, 52, 60]		OMB in new-onset RA [19, 54, 55]	
Dominant (phylum)	Dominant (species; phylum)	Diminished (species; phylum)	Dominant (species; phylum)	Diminished (species; phylum)	Dominant (species; phylum)	Diminished (species; phylum)
Aerobes or facultative anaerobes: Bacteroidota (21%), Actinomycet ota (21.8%), Bacillota (10.9%), Pseudomona dota (16.9%). Obligate anaerobes: Fusobacteriot a (24%), Spirochaetot a (2.5%), Saccharibact eria (1.6%).	Aerobes or facultative anaerobes: Aggregatibacter actinomycetemco mitans; Pseudomonadota. Obligate anaerobes: Porphyromonas gingivalis; Bacteroidota ^a , Tannerella forsythia; Bacteroidota, Treponema denticola; Spirochaetota, Filifactor alocis; Bacilliota, Fusobacterium nucleatum; Fusobacteriota, Prevotella intermedia; Bacteroidota, Saccharibacteria.	Aerobes or facultative anaerobes: Corynebacteri um spp.; Actinomycetot a Neisseria spp.;, Pseudomonado ta; Streptococcus spp.; Bacillota. Propionibacter ium spp.; Actinomycetot a.	Aerobes or facultative anaerobes: Aggregatibacter actinomycetemcomi tans; Pseudomonadota e, Rothia spp.; Actinomycetota, Granulicatella spp; Bacillota. Obligate anaerobes: Prevotella spp.; Bacteroidota, Leptotrichia spp; Fusobacteriota, Fusobacteriota, Fusobacteriota, Fusobacteriota, Megasphaera micronuciformis; Bacillota, Olsenella spp.; Actinomycetota, Erysipelotrichaceae; Bacillota, Cryptobacterium spp.; Actinomycetota, Desulfovibrio spp.; Thermodesulfobact eriota Fretibacterium spp.; Synergistota, Selenomonas spp.; Bacillota, Treponema spp.; Spirochaetota, Veillonella spp.; Bacillota.	Aerobes or facultative anaerobes: Corynebacteri um spp.; Actinomycetot a, Neisseria spp.; Pseudomonado ta, Streptococcus spp.; Bacillota, Haemophilus spp.; Pseudomonado ta, Gemella spp.; Bacillota, Granulicatella spp.; Bacillota.	Obligate anaerobes: Prevotella spp.; Bacteroidotab, Leptotrichia spp.; Fusobacteriota b, Filifactor alocis; Bacillota, Treponema denticola; Spirochaetotac, Porphyromona s spp.; Bacteroidotac, Veilonella spp.; Bacillota.	Aerobes or facultative anaerobes: Corynebacteriu m spp.; Actinomycetot a, Streptococcus spp.; Bacillota. Obligate anaerobes: Defluviitaleace ae spp.; Bacillota, Nanosynbacter oralis; Saccharibacteri a.

a - independently of RA, always higher prevalence in PD (especially severe) [19], b - present, independently of PD status [19], c - members of the "red complex bacteria", including *Porphyromonas, Tannerella* and *Treponema*, are more prevalent in new-onset RA (NORA) microbiota compared to chronic RA (CRA) patients, d - among "red complex" bacteria, *T. denticola* exhibited the highest prevalence in patients with both RA and PD [17], e - significantly more prevalent in RA patients with PD than those without PD [52], f - female RA cohort [42].

3.4 A few words about oral virome in RA patients

While exploring the oral microbiome, several studies also evaluated the co-existing virome. According to this study [61], RA patients, compared to healthy controls, are characterized by a more diverse oral viral community. Notably abundant in saliva were Callitrichine gammaherpesvirus 3, Epstein-Barr virus (EBV), Murid betaherpesvirus 8, and Suid alphaherpesvirus. Interestingly, elevated levels of EBV-infected B-cells and higher antibody titers against EBV have been also observed in RA patients [62]. Ebstein-Barr virus (EBV-1) and Cytomegalovirus (CMV) have the capability to promote bacterial colonization of the gingiva, fostering periodontal disease. PCR-based evaluations of gingival tissue revealed that EBV was present in 71-89% and CMV in 65-78% of patients with severe PD, compared to only 6% in healthy controls [63]. Additionally, Paksoy et al. [17] have reported a notable correlation between RA disease activity (DAS28-CRP) and the prevalence of EBV.

4. Dental treatment and disease-modifying anti-rheumatic drugs

Although not yet fully understood, the role of OMB in chronic inflammation is undeniable. Interventions targeting oral health such as early and regular dental treatments or prophylactic therapies, are believed to decrease the risk of developing and progressing systemic diseases like RA [33, 48, 64]. Dietary modifications, as well as probiotics and antibiotics may also modulate the course of PD and RA [65, 66]. In RA patients with chronic PD, non-surgical periodontal treatments have been shown to reduce RA activity indicators such as ESR, CRP, TNF- α , DAS28 score, as well as decreased levels of ACPA and anti-P. gingivalis antibodies [67, 68]. Animal models have demonstrated that oral antiseptic treatments reduce the total oral bacterial load and protect against the RA-induced periodontal bone loss, favorably altering the oral microbiome [15]. Recently, novel dental treatments such as teeth-cleaning microrobots and red-light therapy for gums have gained attention as potential technologies to enhance oral hygiene and prevent the PD and systemic bone-related diseases [69]. Pre-RA and early-RA groups may benefit most from early periodontal treatment and diseasemodifying antirheumatic drugs (DMARDs), potentially preventing the progression of both PD and RA [70]. Methotrexate (MTX) has been shown in animal models to shift the oral microbiota toward a healthier composition and reduce alveolar bone loss, thereby preserving periodontal health [71]. However, combination therapies, such as MTX with other synthetic DMARDs (sDMARDs), have been associated with more advanced periodontitis stages compared to MTX monotherapy. Meanwhile, systemic corticosteroids are correlated with lower gingival index scores, but long-term use may delay healing and increase infection susceptibility [72, 73]. Sulfasalazine and hydroxychloroquine are generally considered to have minimal direct effects on periodontal tissues, while limited evidence suggests that leflunomide may have a neutral effect on periodontal health. Biologic DMARDs (bDMARDs), such as tumor necrosis factor inhibitors (e.g., infliximab, etanercept), have shown potential benefits for periodontal conditions, reducing bleeding on probing and improving gingival index, probing pocket depth, and clinical attachment level over time [73, 74]. Baricitinib, a Janus kinase (JAK) inhibitor, has also demonstrated improvements in both RA activity and periodontal status, suggesting that JAK blockade may positively influence periodontal inflammation [75]. However, it should be taken into consideration that the use of these medications is associated with an increased risk of viral, bacterial (with abscess formation) and fungal infections,. Cases of osteonecrosis of the jaw have also been reported following the use of TNF- α inhibitors [76].

The anti-inflammatory and immunomodulatory effects of RA treatments may positively influence periodontal health. However, an individualized approach considering both RA and periodontal conditions is essential. Continued research and observation will help clarify these interactions and optimize treatment strategies.

Conclusions and discussion

Rheumatoid arthritis and periodontitis share overlapping inflammatory pathways, genetic predispositions, and environmental triggers, including microbial dysbiosis. Both PD and RA can alter the immune response by modulating the cytokine profile, leading to chronic inflammation and irreversible bone destruction. Based on current knowledge, the prevalence and severity of PD is higher in RA patients, particularly those who are ACPA-positive and higher RA activity. The oral biofilm composition can modulate mucosal inflammation and trigger protein citrullination, contributing to arthritis development and progression—even in the early stages of the disease. In RA patients, systemic inflammation and a shift in the microbiome towards bacterial species associated with periodontitis may exacerbate periodontal conditions. The OMB differences are observed also in RA patients with preserved oral health. Genera such as *Porphyromonas*, *Aggregatibacter*, and *Treponema* have been positively correlated with ACPA titers and potential arthritis

exacerbation. Interestingly, it was suggested that ACPA titers may regulate the colonization of *Porphyromonas* and *Aggregatibacter*. It was observed that *B. forsythus* and *A. actinomycetemcomitans*, has the potential to mimic the repertoire of citrullinated antigens in RA joints, influencing systemic inflammation in RA. Depending on the RA activity, *Treponema spp.* and Absconditabacteriales were associated with low disease activity, *Porphyromonas spp.* with moderate disease activity, *Staphylococcus spp.* and *L. salivarius* with high disease activity. Similarly, the abundance of *F. fastidiosum*, *P. micra*, and *A. geminatus* was correlated with an increased number of swollen and tender joints.

Although the observations regarding specific bacterial species dominating the OMB in RA patients vary across studies, results consistently highlight the high abundance of periodontitis-associated species, along with a reduction in obligate anaerobic bacteria, which play a protective role in the oral cavity.

The non-invasive periodontal treatment has shown the positive impact on RA activity, underscoring the importance of regular dental check-ups as a basic recommendation for all RA patients, with particular emphasis on those in early-RA and pre-RA groups. Early periodontal treatment combined with DMARDs can prevent the progression of both PD and RA. Moreover, some anti-inflammatory treatments for RA has the potential to restore oral homeostasis. Based on current knowledge, the effects of sDMARDs and bDMARDs on periodontal health in RA patients remains scarce and requires further investigation. Nevertheless, periodontal status should be considered when planning personalized immunotherapy, particularly since changes in the OMB could serve as non-invasive biomarkers of disease progression. Future studies should aim to identify specific cellular and molecular targets to modulate immune responses, enabling treatment strategies that prevent the progression of systemic inflammation. Additional research is necessary to establish credible guidelines for application in clinical practice.

Disclosures

Supplementary Materials: They haven't been provided. **Funding Statement:** This research received no funding.

Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflict of Interest: The authors declare no conflict of interest.

All authors have read and agreed with the published version of the manuscript.

REFERENCES

- 1. Hajishengallis, G. (2015). Periodontitis: From microbial immune subversion to systemic inflammation. *Nature Reviews Immunology*, 15(1), 30–44. https://doi.org/10.1038/nri3785
- 2. Nik-Azis, N. M., Mohd, N., Baharin, B., Said, M. S. M., & Mohd Fadzilah, F. (2021). Periodontal disease in seropositive rheumatoid arthritis: Scoping review of the epidemiological evidence. *Germs*, 11(2), 266–286. https://doi.org/10.18683/germs.2021.1263
- 3. Papapanou, P. N., Sanz, M., Buduneli, N., Dietrich, T., Feres, M., Fine, D. H., Flemmig, T. F., Garcia, R., Giannobile, W. V., Graziani, F., Greenwell, H., Herrera, D., Kao, R. T., Kebschull, M., Kinane, D. F., Kirkwood, K. L., Kocher, T., Kornman, K. S., Kumar, P. S., ... Tonetti, M. S. (2018). Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions. *Journal of Periodontology*, 89(Suppl 1), S173–S182. https://doi.org/10.1002/JPER.17-0721
- 4. Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. *Lancet*, *388*(10055), 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8
- 5. Kucharz, E. J., & Puszczewicz, M. (Eds.). (2016). Rheumatology (2nd ed., Chapter: Rheumatoid arthritis). Medical Tribune Poland.
- 6. Wu, D., Luo, Y., Li, T., Zhao, X., Lv, T., Fang, G., Ou, P., Li, H., Luo, X., Huang, A., & Pang, Y. (2022). Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. *Frontiers in Immunology, 13*, 1051082. https://doi.org/10.3389/fimmu.2022.1051082
- 7. Yoshitomi, H. (2019). Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes. *Frontiers in Immunology, 10,* 1395. https://doi.org/10.3389/fimmu.2019.01395
- 8. Eriksson, K., Fei, G., Lundmark, A., Benchimol, D., Lee, L., Hu, Y. O. O., Kats, A., Saevarsdottir, S., Catrina, A. I., Klinge, B., Andersson, A. F., Klareskog, L., Lundberg, K., Jansson, L., & Yucel-Lindberg, T. (2019). Periodontal health and oral microbiota in patients with rheumatoid arthritis. *Journal of Clinical Medicine*, 8(5), 630. https://doi.org/10.3390/jcm8050630

- 9. Ogrendik, M., Kokino, S., Ozdemir, F., Bird, P. S., & Hamlet, S. (2005). Serum antibodies to oral anaerobic bacteria in patients with rheumatoid arthritis. *MedGenMed*, 7(2), 2.
- 10. Nik-Azis, N. M., Mohd, N., Mohd Fadzilah, F., Haflah, N. H. M., Said, M. S. M., & Baharin, B. (2021). Rheumatoid arthritis serotype and synthetic disease-modifying anti-rheumatic drugs in patients with periodontitis: A case-control study. *PLoS One*, *16*(6), e0252859. https://doi.org/10.1371/journal.pone.0252859
- 11. Mikuls, T. R., Payne, J. B., Yu, F., Thiele, G. M., Reynolds, R. J., Cannon, G. W., Markt, J., McGowan, D., Kerr, G. S., Redman, R. S., Reimold, A., Griffiths, G., Beatty, M., Gonzalez, S., Bergman, D. A., Hamilton, B. C., Erickson, A. R., Sokolove, J., Robinson, W., ... O'Dell, J. R. (2014). Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. *Arthritis & Rheumatology*, 66(5), 1090–1100. https://doi.org/10.1002/art.38348
- 12. Queiroz-Junior, C. M., Madeira, M. F. M., Coelho, F. M., Costa, V. V., Bessoni, R. L. C., Sousa, L. F. d. C., Garlet, G. P., Souza, D. G. d., Teixeira, M. M., & Silva, T. A. (2011). Experimental arthritis triggers periodontal disease in mice: Involvement of TNF-α and the oral microbiota. *Journal of Immunology*, 187(7), 3821–3830. https://doi.org/10.4049/jimmunol.1101195
- 13. Corrêa, J. D., Fernandes, G. R., Calderaro, D. C., Mendonça, S. M. S., Silva, J. M., Albiero, M. L., Cunha, F. Q., Xiao, E., Ferreira, G. A., Teixeira, A. L., Mukherjee, C., Leys, E. J., & Silva, T. A. (2019). Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. *Scientific Reports*, *9*, 8379. https://doi.org/10.1038/s41598-019-44674-6
- 14. Golub, L. M., Payne, J. B., Reinhardt, R. A., & Nieman, G. (2006). Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical "two-hit" model. *Journal of Dental Research*, 85(2), 102–105. https://doi.org/10.1177/154405910608500201
- 15. Graves, T., Corrêa, J. D., & Silva, T. A. (2018). The oral microbiota is modified by systemic diseases. *Journal of Dental Research*, 98(2), 148–156. https://doi.org/10.1177/0022034518805739
- 16. Disale, P. R., Zope, S. A., Suragimath, G., Varma, A. S., & Pisal, A. (2020). Prevalence and severity of periodontitis in patients with established rheumatoid arthritis and osteoarthritis. *Journal of Family Medicine and Primary Care*, 9(6), 2919–2925. https://doi.org/10.4103/jfmpc.jfmpc_398_20
- 17. Paksoy, T., Ustaoglu, G., Tasci, M., Demirci, M., Unlu, O., & Yasar, M. F. (2023). Assessment of Epstein–Barr virus, Candida albicans, and some periodontal pathogens in rheumatoid arthritis patients with periodontitis. *North Clinics of Istanbul*, 10(4), 490–500. https://doi.org/10.14744/nci.2023.58998
- 18. Dissick, A., Redman, R. S., Jones, M., Rangan, B. V., Reimold, A., Griffiths, G. R., Mikuls, T. R., Amdur, R. L., Richards, J. S., & Kerr, G. S. (2010). Association of periodontitis with rheumatoid arthritis: A pilot study. *Journal of Periodontology*, 81(2), 223–230. https://doi.org/10.1902/jop.2009.090309
- 19. Scher, J. U., Ubeda, C., Equinda, M., Khanin, R., Buischi, Y., Viale, A., Lipuma, L., Attur, M., Pillinger, M. H., Weissmann, G., Littman, D. R., Pamer, E. G., Bretz, W. A., & Abramson, S. B. (2012). Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. *Arthritis & Rheumatism*, 64(10), 3083–3094. https://doi.org/10.1002/art.34539
- 20. Rooney, C. M., Mankia, K., & Emery, P. (2020). The role of the microbiome in driving RA-related autoimmunity. *Frontiers in Cell and Developmental Biology*, 8, 538130. https://doi.org/10.3389/fcell.2020.538130
- 21. Aggarwal, R., Liao, K., Nair, R., Ringold, S., & Costenbader, K. H. (2009). Anti-citrullinated peptide antibody (ACPA) assays and their role in the diagnosis of rheumatoid arthritis. *Arthritis & Rheumatism*, 61(11), 1472–1483. https://doi.org/10.1002/art.24827
- 22. Catrina, A. I., Svensson, C. I., Malmström, V., Schett, G., & Klareskog, L. (2017). Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. *Nature Reviews Rheumatology*, 13(2), 79–86. https://doi.org/10.1038/nrrheum.2016.200
- 23. Patschan, S., Bothmann, L., Patschan, D., Henze, E., Schmalz, G., Ritter, O., & Ziebolz, D. (2020). Association of cytokine patterns and clinical/laboratory parameters, medication and periodontal burden in patients with rheumatoid arthritis (RA). *Odontology*, 108(3), 441–449. https://doi.org/10.1007/s10266-020-00517-9
- 24. van Zanten, A., Arends, S., Roozendaal, C., Limburg, P. C., Maas, F., Trouw, L. A., Toes, R. E. M., Huizinga, T. W. J., Bootsma, H., & Brouwer, E. (2017). Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. *Annals of the Rheumatic Diseases*, 76(7), 1184–1190. https://doi.org/10.1136/annrheumdis-2016-20999
- 25. Terao, C., Ohmura, K., Ikari, K., Kawaguchi, T., Takahashi, M., Setoh, K., Nakayama, T., Kosugi, S., Sekine, A., Tabara, Y., Taniguchi, A., Momohara, S., Yamanaka, H., Yamada, R., Matsuda, F., & Mimori, T.; Nagahama Study Group. (2014). Effects of smoking and shared epitope on the production of anti-citrullinated peptide antibody in a Japanese adult population. *Arthritis Care & Research*, 66(12), 1818–1827. https://doi.org/10.1002/acr.22385
- 26. Källberg, H., Ding, B., Padyukov, L., Bengtsson, C., Rönnelid, J., Klareskog, L., & Alfredsson, L.; EIRA Study Group. (2010). Smoking is a major preventable risk factor for rheumatoid arthritis: Estimations of risks after various exposures to cigarette smoke. *Annals of the Rheumatic Diseases*, 70(3), 508–511. https://doi.org/10.1136/ard.2009.120899

- 27. Scaf de Molon, R., Rossa, C., Jr, Thurlings, R. M., Cirelli, J. A., & Koenders, M. I. (2019). Linkage of periodontitis and rheumatoid arthritis: Current evidence and potential biological interactions. *International Journal of Molecular Sciences*, 20(18), 4541. https://doi.org/10.3390/ijms20184541
- 28. Koziel, J., Mydel, P., & Potempa, J. (2014). The link between periodontal disease and rheumatoid arthritis: An updated review. *Current Rheumatology Reports*, 16(3), 408. https://doi.org/10.1007/s11926-014-0408-9
- 29. Farquharson, D., Butcher, J. P., & Culshaw, S. (2012). Periodontitis, Porphyromonas, and the pathogenesis of rheumatoid arthritis. *Mucosal Immunology*, 5(2), 112–120. https://doi.org/10.1038/mi.2011.66
- 30. González-Febles, J., & Sanz, M. (2021). Periodontitis and rheumatoid arthritis: What have we learned about their connection and their treatment? *Periodontology 2000*, 87(1), 181–203. https://doi.org/10.1111/prd.12385
- 31. Desclos-Theveniau, M., Bonnaure-Mallet, M., & Meuric, V. (2020). Protein arginine deiminase of oral microbiome plays a causal role in the polyarthritis rheumatoid initiating. *Med Sci (Paris)*, 36(5), 465–471. https://doi.org/10.1051/medsci/2020078
- 32. Nesse, W., Westra, J., van der Wal, J. E., Abbas, F., Nicholas, A. P., Vissink, A., & Brouwer, E. (2012). The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anticitrullinated protein antibody) formation. *Journal of Clinical Periodontology*, 39(7), 599–607. https://doi.org/10.1111/j.1600-051X.2012.01885.x
- 33. Kriebel, K., Hieke, C., Müller-Hilke, B., Nakata, M., & Kreikemeyer, B. (2018). Oral biofilms from symbiotic to pathogenic interactions and associated disease—Connection of periodontitis and rheumatic arthritis by peptidylarginine deiminase. *Frontiers in Microbiology*, 9, 53. https://doi.org/10.3389/fmicb.2018.00053
- 34. Gonzales, J. R., Groeger, S., Johansson, A., & Meyle, J. (2014). T helper cells from aggressive periodontitis patients produce higher levels of interleukin-1 beta and interleukin-6 in interaction with Porphyromonas gingivalis. *Clinical Oral Investigations*, 18(7), 1835–1843. https://doi.org/10.1007/s00784-013-1162-5
- 35. Marchesan, J. T., Gerow, E. A., Schaff, R., Taut, A. D., Shin, S.-Y., Sugai, J., Brand, D., Burberry, A., Jorns, J., Lundy, S. K., Nuñez, G., Fox, D. A., & Giannobile, W. V. (2013). Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. *Arthritis Research & Therapy*, 15(6), R186. https://doi.org/10.1186/ar4376
- 36. Cantley, M. D., Haynes, D. R., Marino, V., & Bartold, P. M. (2011). Pre-existing periodontitis exacerbates experimental arthritis in a mouse model. *Journal of Clinical Periodontology*, 38(6), 532–541. https://doi.org/10.1111/j.1600-051X.2011.01714.x
- 37. Engström, M., Eriksson, K., Lee, L., Hermansson, M., Johansson, A., Nicholas, A. P., Gerasimcik, N., Lundberg, K., Klareskog, L., Catrina, A. I., & Yucel-Lindberg, T. (2018). Increased citrullination and expression of peptidylarginine deiminases independently of P. gingivalis and A. actinomycetemcomitans in gingival tissue of patients with periodontitis. *Journal of Translational Medicine*, 16, 214. https://doi.org/10.1186/s12967-018-1588-2
- 38. Cheng, Z., Do, T., Mankia, K., Meade, J., Hunt, L., Clerehugh, V., Speirs, A., Tugnait, A., Emery, P., & Devine, D. (2021). Dysbiosis in the oral microbiomes of anti-CCP positive individuals at risk of developing rheumatoid arthritis. *Annals of the Rheumatic Diseases*, 80(2), 162–168. https://doi.org/10.1136/annrheumdis-2020-216972
- 39. Sudhakara, P., Gupta, A., Bhardwaj, A., & Wilson, A. (2018). Oral dysbiotic communities and their implications in systemic diseases. *Dentistry Journal*, 6(2), 10. https://doi.org/10.3390/dj6020010Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent, R. L., Jr. (1998). Microbial complexes in subgingival plaque. *Journal of Clinical Periodontology*, 25(2), 134–144. https://doi.org/10.1111/j.1600-051x.1998.tb02419.x
- 40. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent, R. L., Jr. (1998). Microbial complexes in subgingival plaque. *Journal of Clinical Periodontology*, 25(2), 134–144. https://doi.org/10.1111/j.1600-051x.1998.tb02419.x
- 41. Konig, M. F., Abusleme, L., Reinholdt, J., Palmer, R. J., Teles, R. P., Sampson, K., Rosen, A., Nigrovic, P. A., Sokolove, J., Giles, J. T., Moutsopoulos, N. M., & Andrade, F. (2016). Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. *Science Translational Medicine*, 8(369), 369ra176. https://doi.org/10.1126/scitranslmed.aaj1921
- 42. Kozhakhmetov, S., Babenko, D., Issilbayeva, A., Nurgaziyev, M., Kozhakhmetova, S., Meiramova, A., Akhmetova, Z., Kunz, J., Ainabekova, B., & Marotta, F., Kushugulova, A. (2023). Oral microbial signature of rheumatoid arthritis in female patients. *Journal of Clinical Medicine*, 12(11), 3694. https://doi.org/10.3390/jcm12113694
- 43. Mikuls, T. R., Payne, J. B., Reinhardt, R. A., Thiele, G. M., Maziarz, E., Cannella, A. C., Holers, V. M., Kuhn, K. A., & O'Dell, J. R. (2008). Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. *International Immunopharmacology*, *9*(1), 38–42. https://doi.org/10.1016/j.intimp.2008.09.008
- 44. Hitchon, C. A., Chandad, F., Ferucci, E. D., Willemze, A., Ioan-Facsinay, A., van der Woude, D., Markland, J., Robinson, D., Elias, B., Newkirk, M., Toes, R. M., Huizinga, T. W. J., & El-Gabalawy, H. S. (2010). Antibodies to Porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. *Journal of Rheumatology*, 37(6), 1105–1112. https://doi.org/10.3899/jrheum.091323

- 45. Bender, P., Bürgin, W. B., Sculean, A., & Eick, S. (2017). Serum antibody levels against Porphyromonas gingivalis in patients with and without rheumatoid arthritis a systematic review and meta-analysis. *Clinical Oral Investigations*, 21(1), 33–42. https://doi.org/10.1007/s00784-016-1938-5
- 46. Moen, K., Brun, J. G., Madland, T. M., Tynning, T., & Jonsson, R. (2003). Immunoglobulin G and A antibody responses to Bacteroides forsythus and Prevotella intermedia in sera and synovial fluids of arthritis patients. *Clinical and Diagnostic Laboratory Immunology*, 10(6), 1043–1050. https://doi.org/10.1128/CDLI.10.6.1043-1050.2003
- 47. Martinsson, K., Di Matteo, A., Öhman, C., Johansson, A., Svärd, A., Mankia, K., Emery, P., & Kastbom, A. (2023). Antibodies to leukotoxin A from the periodontal pathogen Aggregatibacter actinomycetemcomitans in patients at an increased risk of rheumatoid arthritis. *Frontiers in Medicine*, 10, 1176165. https://doi.org/10.3389/fmed.2023.1176165
- 48. Brewer, R. C., Lanz, T. V., Hale, C. R., Sepich-Poore, G. D., Martino, C., Swafford, A. D., Carroll, T. S., Kongpachith, S., Blum, L. K., Elliott, S. E., Blachere, N. E., Parveen, S., Fak, J., Yao, V., Troyanskaya, O., Frank, M. O., Bloom, M. S., Jahanbani, S., Gomez, A. M., Iyer, R., Ramadoss, N. S., Sharpe, O., Chandrasekaran, S., Kelmenson, L. B., Wang, Q., Wong, H., Torres, H. L., Wiesen, M., Graves, D. T., Deane, K. D., Holers, V. M., Knight, R., Darnell, R. B., Robinson, W. H., & Orange, D. E. (2023). Oral mucosal breaks trigger anti-citrullinated bacterial and human protein antibody responses in rheumatoid arthritis. *Science Translational Medicine*, 15(684), eabq8476. https://doi.org/10.1126/scitranslmed.abq8476
- 49. Zhang, X., Zhang, D., Jia, H., Feng, Q., Wang, D., Liang, D., Wu, X., Li, J., Tang, L., Li, Y., Lan, Z., Chen, B., Li, Y., Zhong, H., Xie, H., Jie, Z., Chen, W., Tang, S., Xu, X., Wang, X., Cai, X., Liu, S., Xia, Y., Li, J., Qiao, X., Al-Aama, J. Y., Chen, H., Wang, L., Wu, Q.-J., Zhang, F., Zheng, W., Li, Y., Zhang, M., Luo, G., Xue, W., Xiao, L., Li, J., Chen, W., Xu, X., Yin, Y., Yang, H., Wang, J., Kristiansen, K., Liu, L., Li, T., Huang, Q., Li, Y., & Wang, J. (2015). The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine, 21(8), 895–905. https://doi.org/10.1038/nm.3914
- 50. Schmickler, J., Rupprecht, A., Patschan, S., Patschan, D., Müller, G. A., Haak, R., Mausberg, R. F., Schmalz, G., Kottmann, T., & Ziebolz, D. (2017). Cross-sectional evaluation of periodontal status and microbiologic and rheumatoid parameters in a large cohort of patients with rheumatoid arthritis. *Journal of Periodontology*, 88(4), 368–379. https://doi.org/10.1902/jop.2016.160355
- 51. Larsen, J. M. (2017). The immune response to *Prevotella* bacteria in chronic inflammatory disease. *Immunology*, 151(4), 363–374. https://doi.org/10.1111/imm.12760
- 52. Huang, Y., & Ni, S. (2023). *Aggregatibacter actinomycetemcomitans* with periodontitis and rheumatoid arthritis. *International Dental Journal*, 74(1), 58–65. https://doi.org/10.1016/j.identj.2023.06.011
- 53. Arleevskaya, M. I., Boulygina, E. A., Larionova, R., Validov, S., Kravtsova, O., Shagimardanova, E. I., Velo, L., Hery-Arnaud, G., Carlé, C., & Renaudineau, Y. (2022). Anti-citrullinated peptide antibodies control oral *Porphyromonas* and *Aggregatibacter* species in patients with rheumatoid arthritis. *International Journal of Molecular Sciences*, 23(20), 12599. https://doi.org/10.3390/ijms232012599
- 54. Tong, Y., Zheng, L., Qing, P., Zhao, H., Li, Y., Su, L., Zhang, Q., Zhao, Y., Luo, Y., & Liu, Y. (2020). Oral microbiota perturbations are linked to high risk for rheumatoid arthritis. *Frontiers in Cellular and Infection Microbiology*, 9, 475. https://doi.org/10.3389/fcimb.2019.00475
- 55. Esberg, A., Johansson, L., Johansson, I., & Rantapää Dahlqvist, S. (2021). Oral microbiota identifies patients in early onset rheumatoid arthritis. *Microorganisms*, *9*(8), 1657. https://doi.org/10.3390/microorganisms9081657
- 56. Kroese, J. M., Brandt, B. W., Buijs, M. J., Crielaard, W., Lobbezoo, F., Loos, B. G., van Boheemen, L., van Schaardenburg, D., Zaura, E., & Volgenant, C. M. C. (2021). Differences in the oral microbiome in patients with early rheumatoid arthritis and individuals at risk of rheumatoid arthritis compared to healthy individuals. *Arthritis & Rheumatology*, 73(11), 1986–1993. https://doi.org/10.1002/art.41780
- 57. Beyer, K., Zaura, E., Brandt, B. W., Buijs, M. J., Brun, J. G., Crielaard, W., & Bolstad, A. I. (2018). Subgingival microbiome of rheumatoid arthritis patients in relation to their disease status and periodontal health. *PLoS One*, 13(9), e0202278. https://doi.org/10.1371/journal.pone.0202278
- 58. Chen, B., Zhao, Y., Li, S., Yang, L., Wang, H., Wan, T., Shi, B., Gai, Z., Heng, X., Zhang, C., Yang, J., & Zhang, L. (2018). Variations in oral microbiome profiles in rheumatoid arthritis and osteoarthritis with potential biomarkers for arthritis screening. *Scientific Reports*, *8*, 17126. https://doi.org/10.1038/s41598-018-35473-6
- 59. Silvestre-Rangil, J., Bagán, L., Silvestre, F. J., & Bagán, J. V. (2016). Oral manifestations of rheumatoid arthritis: A cross-sectional study of 73 patients. *Clinical Oral Investigations*, 20(9), 2575–2580. https://doi.org/10.1007/s00784-016-1745-z
- 60. Lopez-Oliva, I., Paropkari, A. D., Saraswat, S., Serban, S., Yonel, Z., Sharma, P., de Pablo, P., Raza, K., Filer, A., Chapple, I., Dietrich, T., Grant, M. M., & Kumar, P. S. (2018). Dysbiotic subgingival microbial communities in periodontally healthy patients with rheumatoid arthritis. *Arthritis & Rheumatology*, 70(7), 1008–1013. https://doi.org/10.1002/art.40485
- 61. Ghorbani, M., & Khoshdoozmasouleh, N. (2024). Distinct oral DNA viral signatures in rheumatoid arthritis: A pilot study. *Journal of Oral Microbiology*, *16*(1), 2348260. https://doi.org/10.1080/20002297.2024.2348260

- 62. Li, S., Yu, Y., Yue, Y., Zhang, Z., & Su, K. (2013). Microbial infection and rheumatoid arthritis. *Journal of Clinical & Cellular Immunology*, 4(6), 174. https://doi.org/10.4172/2155-9899.1000174
- 63. Krutyhołowa, A., Strzelec, K., Dziedzic, A., Bereta, G. P., Łazarz-Bartyzel, K., Potempa, J., & Gawron, K. (2022). Host and bacterial factors linking periodontitis and rheumatoid arthritis. *Frontiers in Immunology*, *13*, 980805. https://doi.org/10.3389/fimmu.2022.980805
- 64. Gao, L., Cheng, Z., Zhu, F., Bi, C., Shi, Q., & Chen, X. (2022). The oral microbiome and its role in systemic autoimmune diseases: A systematic review of big data analysis. *Frontiers in Big Data*, 5, 927520. https://doi.org/10.3389/fdata.2022.927520
- 65. Sandhya, P., Danda, D., Sharma, D., & Scaria, V. (2016). Does the buck stop with the bugs? An overview of microbial dysbiosis in rheumatoid arthritis. *International Journal of Rheumatic Diseases*, 19(1), 8–20. https://doi.org/10.1111/1756-185X.12728
- 66. Elsouri, K., Arboleda, V., Heiser, S., Kesselman, M. M., & Demory Beckler, M. (2021). Microbiome in rheumatoid arthritis and celiac disease: A friend or foe. *Cureus*, *13*(6), e15543. https://doi.org/10.7759/cureus.15543
- 67. Erciyas, K., Sezer, U., Ustün, K., Pehlivan, Y., Kisacik, B., Senyurt, S. Z., Tarakçioğlu, M., & Onat, A. M. (2013). Effects of periodontal therapy on disease activity and systemic inflammation in rheumatoid arthritis patients. *Oral Diseases*, 19(4), 394–400. https://doi.org/10.1111/odi.12017
- 68. Okada, M., Kobayashi, T., Ito, S., Yokoyama, T., Abe, A., Murasawa, A., & Yoshie, H. (2013). Periodontal treatment decreases levels of antibodies to *Porphyromonas gingivalis* and citrulline in patients with rheumatoid arthritis and periodontitis. *Journal of Periodontology*, 84(12), e74–e84. https://doi.org/10.1902/jop.2013.130079
- 69. Hu, W., Chen, S., Zou, X., Chen, Y., Luo, J., Zhong, P., & Ma, D. (2024). Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. *Journal of Advanced Research*, S2090-1232(24)00362-X. https://doi.org/10.1016/j.jare.2024.08.019
- 70. Kulkarni, A., Beckler, M. D., Amini, S. S., & Kesselman, M. M. (2022). Oral microbiome in pre-rheumatoid arthritis: The role of *Aggregatibacter actinomycetemcomitans* in bacterial composition. *Cureus*, 14(12), e32201. https://doi.org/10.7759/cureus.32201
- 71. de Arruda, J. A. A., Corrêa, J. D., Singh, Y., Oliveira, S. R., Machado, C. C., Schneider, A. H., Medeiros, J. D., Fernandes, G. R., Macari, S., Barrioni, B. R., Santos, M. S., Duffles, L. F., Nakaya, H. T. I., Fukada, S. Y., Graves, D. T., Cunha, F. Q., & Silva, T. A. (2022). Methotrexate promotes recovery of arthritis-induced alveolar bone loss and modifies the composition of the oral-gut microbiota. *Anaerobe*, 75, 102577. https://doi.org/10.1016/j.anaerobe.2022.102577
- 72. Nik-Azis, N. M., Mohd, N., Mohd Fadzilah, F., Mohamed Hafla, N. H., Mohamed Said, M. S., & Baharin, B. (2021). Rheumatoid arthritis serotype and synthetic disease-modifying anti-rheumatic drugs in patients with periodontitis: A case-control study. *PLoS One*, *16*(6), e0252859. https://doi.org/10.1371/journal.pone.0252859
- 73. Martu, M.-A., Maftei, G.-A., Luchian, I., Stefanescu, O. M., Scutariu, M. M., & Solomon, S. M. (2021). The effect of acknowledged and novel anti-rheumatic therapies on periodontal tissues—A narrative review. *Pharmaceuticals* (*Basel*), 14(12), 1209. https://doi.org/10.3390/ph14121209
- 74. Zamri, F., & de Vries, T. J. (2020). Use of TNF inhibitors in rheumatoid arthritis and implications for the periodontal status: For the benefit of both? *Frontiers in Immunology*, 11, 591365. https://doi.org/10.3389/fimmu.2020.591365
- 75. Ancuţa, C., Pomîrleanu, C., Mihailov, C., Chirieac, R., Ancuţa, E., Iordache, C., Bran, C., & Țănculescu, O. (2020). Efficacy of baricitinib on periodontal inflammation in patients with rheumatoid arthritis. *Joint Bone Spine*, 87(3), 235–239. https://doi.org/10.1016/j.jbspin.2019.12.003
- 76. Teoh, L., Moses, G., Nguyen, A. P., & McCullough, M. J. (2021). Medication-related osteonecrosis of the jaw: Analysing the range of implicated drugs from the Australian database of adverse event notifications. *British Journal of Clinical Pharmacology*, 87(7), 2767–2776. https://doi.org/10.1111/bcp.14681