

International Journal of Innovative Technologies in Social Science

e-ISSN: 2544-9435

Scholarly Publisher
RS Global Sp. z O.O.
ISNI: 0000 0004 8495 2390

Dolna 17, Warsaw,
Poland 00-773
+48 226 0 227 03
editorial_office@rsglobal.pl

ARTICLE TITLE IMPROVEMENT OF ROTATIONAL KNEE STABILITY USING LATERAL EXTRA-ARTICULAR TENODESIS AND ANTEROLATERAL LIGAMENT RECONSTRUCTION: INDICATIONS, COMPLICATIONS, AND COMPARISON OF TECHNIQUES — A REVIEW OF THE LITERATURE

DOI [https://doi.org/10.31435/ijitss.3\(47\).2025.4078](https://doi.org/10.31435/ijitss.3(47).2025.4078)

RECEIVED 01 August 2025

ACCEPTED 21 September 2025

PUBLISHED 30 September 2025

LICENSE The article is licensed under a **Creative Commons Attribution 4.0 International License**.

© The author(s) 2025.

This article is published as open access under the Creative Commons Attribution 4.0 International License (CC BY 4.0), allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

IMPROVEMENT OF ROTATIONAL KNEE STABILITY USING LATERAL EXTRA-ARTICULAR TENODESIS AND ANTEROLATERAL LIGAMENT RECONSTRUCTION: INDICATIONS, COMPLICATIONS, AND COMPARISON OF TECHNIQUES — A REVIEW OF THE LITERATURE

Maciej Sokółowski (Corresponding Author, Email: sokolowskimaciej17@gmail.com)

Specialist Hospital named after Stefan Żeromski in Kraków, Kraków, Poland

ORCID ID: 0009-0009-8559-0620

Karolina Oskroba

Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland

ORCID ID: 0009-0003-7169-2841

Estera Graczyk

University Clinical Hospital No. 2 of the Medical University of Łódź, Łódź, Poland

ORCID ID: 0009-0006-4901-0172

Joanna Kryślak

University Clinical Hospital in Poznań, Poznań, Poland

ORCID ID: 0009-0004-5678-2643

Katarzyna Skibicka

University Hospital No. 2 named after Jan Bizieli in Bydgoszcz, Bydgoszcz, Poland

ORCID ID: 0009-0001-3192-9301

Adam Solarz

Specialist Hospital named after Stefan Żeromski in Kraków, Kraków, Poland

ORCID ID: 0009-0005-6039-8449

Szymon Szabelski

University Clinical Hospital No. 2 of the Medical University of Łódź, Łódź, Poland

ORCID ID: 0009-0002-5621-2590

Jakub Filip Turcza

Department of Cosmetology and Aesthetic Medicine, Medical University of Lublin, Lublin, Poland

ORCID ID: 0009-0004-3609-8772

ABSTRACT

The anterior cruciate ligament (ACL) is one of the most frequently injured structures of the knee. To restore joint function, ACL reconstruction surgery is commonly performed. However, despite successful reconstruction, some patients fail to regain full function due to residual rotational instability. Procedures aimed at improving rotational stability include anterolateral ligament reconstruction (ALLR) and lateral extra-articular tenodesis (LET). This article reviews the anatomy of the ACL and the anterolateral complex. The techniques of ALLR and LET are described, and the two methods are compared. Indications, complications, clinical outcomes, and potential long-term effects of these procedures are also discussed.

KEYWORDS

ACL, ACLR, ALLR, LET, Comparison

CITATION

Maciej Sokołowski, Karolina Oskroba, Estera Graczyk, Joanna Kryślak, Katarzyna Skibicka, Adam Solarz, Szymon Szabelski, Jakub Filip Turcza. (2025) Improvement of Rotational Knee Stability Using Lateral Extra-Articular Tenodesis and Anterolateral Ligament Reconstruction: Indications, Complications, and Comparison of Techniques — A Review of the Literature. *International Journal of Innovative Technologies in Social Science*. 3(47). doi: 10.31435/ijitss.3(47).2025.4078

COPYRIGHT

© The author(s) 2025. This article is published as open access under the **Creative Commons Attribution 4.0 International License (CC BY 4.0)**, allowing the author to retain copyright. The CC BY 4.0 License permits the content to be copied, adapted, displayed, distributed, republished, or reused for any purpose, including adaptation and commercial use, as long as proper attribution is provided.

1. Introduction

The anterior cruciate ligament (ACL) is a structural component of the knee that is frequently prone to injury. According to available data, it accounts for approximately 50% of all knee injuries. This is particularly relevant in women and young, active individuals. Furthermore, as many as 400,000 reconstructive surgeries are performed annually in the United States alone [3].

Anterior cruciate ligament reconstruction (ACLR) is performed arthroscopically. Various methods are available for obtaining a graft, including the semitendinosus and gracilis tendons, the bone–patellar tendon–bone technique, or the quadriceps tendon [4].

Although the long-term outcomes of ACLR are generally satisfactory, the rotational stability of the knee is not fully restored, with as many as 25% to 30% of patients continuing to experience this issue. Moreover, the rate of return to pre-injury sports participation ranges from 44% to 72%, which is considered suboptimal [5].

The resulting rotational instability increases the risk of meniscal and cartilage injuries and contributes to the progression of degenerative changes within the joint [11]. To mitigate these risks, techniques aimed at improving stabilization—such as more lateral femoral tunnel placement or the addition of a posterolateral bundle—have been employed; however, these methods have not achieved the desired outcomes [5][12].

The discovery of the role of the anterolateral structures of the knee, such as the iliotibial band and the anterolateral joint capsule and ligament, which act synergistically with the ACL, has led to the development of additional lateral stabilization techniques, namely lateral extra-articular tenodesis (LET) and anterolateral ligament reconstruction (ALLR). These techniques enable the reduction of rotational instability and have also been associated with a decreased rate of ACL graft re-injury [13].

This article aims to present the methods of additional stabilization in ACL injury, including lateral extra-articular tenodesis and anterolateral ligament reconstruction. The surgical techniques for performing these procedures are described, along with the indications for their use and potential complications. The two methods are then compared, with the strengths and limitations of each identified to tailor the treatment process as closely as possible to the individual needs of the patient.

2. Anatomy and Biomechanics

The anterior cruciate ligament is located between the medial part of the lateral femoral condyle and the anterior part of the tibial plateau. It consists of two bundles: the anteromedial (AM) and posterolateral (PL) bundles. The names of these bundles derive from the location of their distal attachment on the tibia [1][2]. The AM bundle is primarily responsible for limiting anterior translation of the tibia. The fibers of this bundle become tense during knee flexion and are optimally positioned to perform this function. The PL bundle, by contrast, plays a role in limiting internal rotation of the tibia; however, due to its anatomical orientation and fiber alignment, it does not provide sufficient stabilization on its own. This highlights the importance of the anterolateral complex (ALC) [16].

The anatomy of the anterolateral complex of the knee joint is more intricate, and there is no complete consensus in the literature regarding its individual components. The ALC comprises a group of structures located on the lateral side of the knee, extending from the proximal Kaplan fibers to Gerdy's tubercle. The superficial layer of the iliotibial band (ITB) runs anteriorly toward the patella and terminates at Gerdy's tubercle, with posterior connections to the fascia of the biceps femoris muscle. The middle layer of the ITB, characterized by its obliquely arranged fibers, has also been described [15]. The deep layer lies beneath the middle layer and attaches slightly posterior to Gerdy's tubercle [14].

Within the deep layer are the Kaplan fibers, which connect the superficial layer of the ITB to the femoral epiphysis in a transverse orientation. These fibers can be subdivided into proximal and distal bundles [17]. They are reinforced by the capsulo-osseous layer, which links to the fascia of the gastrocnemius muscle and the biceps femoris tendon, forming the deepest layer of the ITB [20]. The ALC also includes the anterolateral part of the joint capsule and the anterolateral ligament (ALL). The ALL is defined as a capsular structure of variable size and thickness among individuals. It attaches proximally and posteriorly to the lateral femoral epicondyle, adjacent to the lateral collateral ligament (LCL), crosses over it, and attaches distally to the posterior portion of Gerdy's tubercle on the tibia, with connections to the lateral meniscus.

The ALC functions as a cohesive unit to provide rotational stability in conjunction with the ACL. Injury to both the ACL and the ALC significantly increases rotational instability, whereas isolated injuries to either structure may not necessarily result in clinical instability if the other structure remains intact [25].

3. Anterolateral Ligament Reconstruction

Anterolateral ligament reconstruction involves replacing the damaged ligament with a graft to restore knee stability and function. This procedure can be performed arthroscopically, through minimally invasive techniques, and in combination with ACLR. The aim is to eliminate rotational instability and augment ACL function. The procedure can be carried out in various ways, including anatomical ALL reconstruction, often using autografts from the patient [18]; augmentation combined with ACL reconstruction, where both ligaments are reconstructed simultaneously, often sharing the same graft [19]; isometric ALL reconstruction, ensuring constant graft tension throughout knee motion [21]; the all-onlay technique, in which the graft is fixed on the surface of the femur for extra-articular reconstruction [22]; and the all-inside technique, which uses tibial and femoral tunnels for intra-articular reconstruction [23]. Combined ACL-ALL reconstruction can be performed using the same or separate grafts for each ligament [24]. Semitendinosus and gracilis tendons are commonly used as graft sources [18].

The femoral tunnel for ALLR is generally created proximal and posterior to the lateral femoral epicondyle, while the tibial tunnel is positioned midway between the fibular head and Gerdy's tubercle. In some cases, two tibial tunnels are created to better replicate the anatomical footprint of the ALL. The femoral tunnel is positioned with the knee in full extension or slight flexion. The graft is tensioned near full extension to control axial displacement and loosened at 90° flexion to permit physiological internal rotation [14].

Graft tensioning plays a critical role in restoring normal knee kinematics. Studies have shown that a tension of approximately 20 N at full extension restores normal knee biomechanics, whereas higher tensions (e.g., 88 N at 70° flexion) excessively restrict internal rotation [29][30]. The optimal tension is therefore considered to be around 20 N [32].

One of the challenges of ALLR is the risk of femoral tunnel convergence between the ACL and ALL tunnels. Using an outside-in technique for ACL femoral tunnel creation allows better control of the tunnel orientation on the lateral femoral cortex and reduces the risk of convergence. In contrast, the inside-out technique provides less predictability regarding tunnel exit location [33][34].

While no standardized guidelines currently exist for ALLR indications, the procedure is recommended for patients at high risk of ACL graft failure [14]. Complications may include infection (0.32% to 1.8%),

persistent pain and swelling, hemarthrosis requiring drainage, deep vein thrombosis, nerve injury, complex regional pain syndrome, graft failure, excessive scar formation leading to stiffness, patellar fracture (in cases using patellar tendon grafts), and recurrent instability [35][36][37].

4. Lateral Extra-articular Tenodesis

Lateral extra-articular tenodesis is a well-established procedure first described by Lemaire in 1967 [26]. ACLR alone may not provide sufficient rotational stability, predisposing patients to chronic knee instability, reduced return-to-sport rates, ACL re-injury, and earlier onset of degenerative changes [27]. Biomechanical studies have demonstrated that combining ACLR with LET offers superior rotational stability compared to isolated ACLR [28]. Clinical studies have further shown that LET reduces the risk of ACL graft failure by 30% to 58% in high-risk groups such as athletes and individuals with high-grade pivot shift [31].

Numerous LET techniques exist, varying in graft type and fixation method. The modified Lemaire technique is among the most commonly employed. It uses a 10–12 mm wide, 7–8 cm long ITB graft, preserving its attachment at Gerdy's tubercle. The proximal portion is dissected approximately 2 cm above the lateral femoral epicondyle, and the free end is sutured using a Krakow suture. The graft is passed deep to the LCL using a shuttle suture loop, optimally controlling internal rotation during both flexion and extension while preventing graft dislocation over the condyle. Fixation is performed near the LCL attachment, approximately 1 cm proximal and posterior to the original LCL insertion on the femoral condyle. A tunnel is drilled in an anterior–proximal direction to avoid convergence with the ACL tunnel, and fixation is secured with the knee at 70°–90° flexion and neutral rotation [31].

Indications for LET, as described by Getgood et al., include return to pivoting sports, high-grade pivot shift (grade 2 or higher), generalized ligamentous laxity, and knee hyperextension (recurvatum >10°) [42].

Zabrzynski et al. recently conducted a systematic review in which they noted that the most common indications for LET are meniscal surgery, sports activity, and grade 2 and 3 pivoting. Other indications may include Segond fracture, chronic anterior cruciate ligament lesion, radiographic lateral femoral notch sign, and lateral coronal plane laxity.[43]

Complications of LET include removal or irritation of LET material fixation, hematoma over the LET site, and pain over the LET site. The total complication rate is estimated at 4.2% according to Zabrzynski et al. [40] Excessive tension of the lateral complex is also possible, resulting in faster degenerative changes. However, Devitt et al. showed in their study that the evidence for the presence of degenerative changes is insufficient and further long-term studies are necessary to confirm this phenomenon. [41]

Table 1. Comparison of ALLR and LET

Category	ALLR	LET
Type of Graft	Semitendinosus or gracilis tendon	Iliotibial band 10–12 mm wide, 7–8 cm long
Initial Attachment Site	8 mm proximal and 4 mm posterior to lateral femoral epicondyle	1 cm posterior and 1 cm proximal to fibular collateral ligament
Final Attachment Site	5–10 mm below joint line Midpoint between Gerdy's tubercle and fibular head Two tibial tunnels may be used	Distal attachment intact at Gerdy's tubercle Longer lever arm may increase joint restriction
Graft Fixation	Fixed in full or near-full extension Neutral rotation Tension: ~20N	Fixed at 70–90° flexion Neutral rotation Tension: ~20N
Technical Considerations	Risk of tunnel collision with ACLR if anterior proximal direction not maintained	Excessive tension may increase stiffness and cause early osteoarthritis
Clinical Effects	Increased rotational stability Reduced ACL re-injury risk Reduced residual laxity	Increased rotational stability Reduced ACL re-injury risk Reduced residual laxity

The Table 1. shows a comparison of anterolateral ligament reconstruction - ALLR with extra-articular lateral tenodesis - LET. ACL - anterior cruciate ligament, ACLR - anterior cruciate ligament reconstruction.

5. Conclusions

Additional stabilization techniques, namely anterolateral ligament reconstruction and lateral extra-articular tenodesis, are increasingly used in conjunction with ACL reconstruction. Evidence suggests that these methods significantly enhance rotational stability, reduce the risk of ACL graft failure, and minimize residual laxity compared to isolated ACL reconstruction. While ALLR and LET differ in graft selection and fixation sites, their clinical outcomes appear comparable. To establish optimal patient selection criteria and assess potential long-term risks, particularly concerning joint degeneration, further multicenter clinical trials and long-term follow-up studies are warranted.

Author's contribution:

Conceptualization: Maciej Sokołowski, Karolina Oskroba

Check: Maciej Sokołowski, Adam Solarz

Formal analysis: Maciej Sokołowski, Karolina Oskroba

Resources: Karolina Oskroba, Ester Graczyk, Joanna Kryślak,

Data curation: Karolina Oskroba, Katarzyna Skibicka, Szymon Szabelski

Writing - rough preparation: Karolina Oskroba, Maciej Sokołowski

Writing - review and editing: Maciej Sokołowski, Karolina Oskroba, Ester Graczyk, Joanna Kryślak, Katarzyna Skibicka, Adam Solarz, Szymon Szabelski,

Supervision: Jakub Filip Turcza

Project administration: Jakub Filip Turcza

Acknowledgments: This research has not received any administrative or technical support.

Conflict of Interest Statement: The authors declare no conflict of interest.

All authors have read and agreed with the published version of the manuscript.

List of abbreviations:

ACL - Anterior Cruciate Ligament, ALLR - Anterolateral Ligament Reconstruction, LET - Lateral Extra-articular Tenodesis, ACLR - Anterior Cruciate Ligament Reconstruction, AM – Anteromedial, PL – Posteriorlateral, ALC - Anterolateral Complex, ITB - Iliotibial Band, ALL - Anterolateral Ligament, LCL - Lateral Collateral Ligament.

REFERENCES

- Evans J, Mabrouk A, Nielson Jl. Anterior Cruciate Ligament Knee Injury. [Updated 2023 Nov 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK499848/#>
- Macaulay AA, Perfetti DC, Levine WN. Anterior cruciate ligament graft choices. Sports Health. 2012 Jan;4(1):63-8. doi: 10.1177/1941738111409890. PMID: 23016071; PMCID: PMC3435898.
- Na BR, Kwak WK, Seo HY, Seon JK. Clinical Outcomes of Anterolateral Ligament Reconstruction or Lateral Extra-articular Tenodesis Combined With Primary ACL Reconstruction: A Systematic Review With Meta-analysis. Orthop J Sports Med. 2021 Sep 13;9(9):23259671211023099. doi: 10.1177/23259671211023099. PMID: 34541008; PMCID: PMC8442508.
- Jonsson H, Riklund-Ahlström K, Lind J. Positive pivot shift after ACL reconstruction predicts later osteoarthritis: 63 patients followed 5-9 years after surgery. Acta Orthop Scand. 2004 Oct;75(5):594-9. doi: 10.1080/00016470410001484. PMID: 15513493.
- Mascarenhas R, Cvetanovich GL, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C, Bach BR Jr. Does Double-Bundle Anterior Cruciate Ligament Reconstruction Improve Postoperative Knee Stability Compared With Single-Bundle Techniques? A Systematic Review of Overlapping Meta-analyses. Arthroscopy. 2015 Jun;31(6):1185-96. doi: 10.1016/j.arthro.2014.11.014. Epub 2015 Jan 14. PMID: 25595691.
- Lee, J.H., Lee, G.B., Chung, W. et al. Addition of anterolateral ligament reconstruction to primary anterior cruciate ligament reconstruction could benefit recovery of functional outcomes. Sci Rep 14, 11440 (2024). <https://doi.org/10.1038/s41598-024-62444-x>

7. Śmigielski R, Zdanowicz U, Drwięga M, Ciszek B, Williams A. The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. *Bone Joint J.* 2016 Aug;98-B(8):1020-6. doi: 10.1302/0301-620X.98B8.37117. PMID: 27482012.
8. Siegel L, Vandenakker-Albanese C, Siegel D. Anterior cruciate ligament injuries: anatomy, physiology, biomechanics, and management. *Clin J Sport Med.* 2012 Jul;22(4):349-55. doi: 10.1097/JSM.0b013e3182580cd0. PMID: 22695402.
9. Domnick C, Raschke MJ, Herbort M. Biomechanics of the anterior cruciate ligament: Physiology, rupture and reconstruction techniques. *World J Orthop.* 2016 Feb 18;7(2):82-93. doi: 10.5312/wjo.v7.i2.82. PMID: 26925379; PMCID: PMC4757662.
10. Herbst E, Albers M, Burnham JM, Fu FH, Musahl V. The Anterolateral Complex of the Knee. *Orthop J Sports Med.* 2017 Oct 6;5(10):2325967117730805. doi: 10.1177/2325967117730805. PMID: 29051903; PMCID: PMC5638167.
11. Park JG, Han SB, Lee CS, Jeon OH, Jang KM. Anatomy, Biomechanics, and Reconstruction of the Anterolateral Ligament of the Knee Joint. *Medicina (Kaunas).* 2022 Jun 10;58(6):786. doi: 10.3390/medicina58060786. PMID: 35744048; PMCID: PMC9228568.
12. Sayac G, Goimard A, Klasan A, Putnis S, Bergandi F, Farizon F, Philippot R, Neri T. The anatomy of Kaplan fibers. *Arch Orthop Trauma Surg.* 2021 Mar;141(3):447-454. doi: 10.1007/s00402-020-03718-7. Epub 2021 Jan 8. PMID: 33417018.
13. Getgood A, Brown C, Lording T, Amis A, Claes S, Geeslin A, Musahl V; ALC Consensus Group. The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting. *Knee Surg Sports Traumatol Arthrosc.* 2019 Jan;27(1):166-176. doi: 10.1007/s00167-018-5072-6. Epub 2018 Jul 25. PMID: 30046994.
14. Willinger L, Athwal KK, Holthof S, Imhoff AB, Williams A, Amis AA. Role of the Anterior Cruciate Ligament, Anterolateral Complex, and Lateral Meniscus Posterior Root in Anterolateral Rotatory Knee Instability: A Biomechanical Study. *Am J Sports Med.* 2023 Apr;51(5):1136-1145. doi: 10.1177/03635465231161071. Epub 2023 Mar 14. PMID: 36917838; PMCID: PMC10068405.
15. Kim MS, Koh IJ, In Y. Isometric Anterolateral Ligament Reconstruction Using the Semitendinosus Tendon With Suspensory Tibial Fixation. *Arthrosc Tech.* 2020 Jun 6;9(7):e941-e945. doi: 10.1016/j.eats.2020.03.017. PMID: 32714802; PMCID: PMC7372517.
16. Geeslin AG, Chahla J, LaPrade RF. Combined Anterior Cruciate Ligament and Lateral Extra-Articular Reconstruction. *Arthroscopy.* 2022 Sep;38(9):2600-2601. doi: 10.1016/j.arthro.2022.07.001. PMID: 36064274.
17. Ohliger J 3rd, Haus A, Fong R, Lang S, Gilmer BB, Wahl CJ. Modified Bosworth Technique for Medial Collateral Ligament Reconstruction of the Knee Using Semitendinosus Tendon Autograft. *Arthrosc Tech.* 2022 Sep 8;11(11):e1903-e1909. doi: 10.1016/j.eats.2022.07.003. PMID: 36457399; PMCID: PMC9705397.
18. Grimm NL, Modrow K, Ryan E, Curran J, Jimenez AE, Levy BJ. All-Onlay Anterolateral Ligament Reconstruction Technique of the Knee. *Arthrosc Tech.* 2024 May 24;13(9):103060. doi: 10.1016/j.eats.2024.103060. PMID: 39308579; PMCID: PMC11411354.
19. Bosco F, Giustra F, Ghirri A, Cacciola G, Massè A, Capella M. All-Inside Anterior Cruciate Ligament Reconstruction Technique: Tips and Tricks. *J Clin Med.* 2023 Sep 6;12(18):5793. doi: 10.3390/jcm12185793. PMID: 37762734; PMCID: PMC10532376.
20. Barroso BG, Canuto SMG, Helito CP, Rêgo MCF, Martins FS, Rêgo MCF. Combined Anterior Cruciate Ligament and Anterolateral Ligament Reconstruction Using the Superficial Layer Quadriceps Tendon Graft: Surgical Technique Description. *Arthrosc Tech.* 2024 May 30;13(10):103067. doi: 10.1016/j.eats.2024.103067. PMID: 39479041; PMCID: PMC11519883.
21. Inderhaug E., Stephen J.M., Williams A., Amis A.A. Anterolateral Tenodesis or Anterolateral Ligament Complex Reconstruction: Effect of Flexion Angle at Graft Fixation When Combined With ACL Reconstruction. *Am. J. Sports Med.* 2017;45:3089–3097. doi: 10.1177/0363546517724422
22. Nitri M., Rasmussen M.T., Williams B.T., Moulton S.G., Cruz R.S., Dornan G.J., Goldsmith M.T., LaPrade R.F. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 2: Anterolateral Ligament Reconstruction Combined With Anterior Cruciate Ligament Reconstruction. *Am. J. Sports Med.* 2016;44:593–601. doi: 10.1177/0363546515620183
23. Schon J.M., Moatshe G., Brady A.W., Serra Cruz R., Chahla J., Dornan G.J., Turnbull T.L., Engebretsen L., LaPrade R.F. Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle. *Am. J. Sports Med.* 2016;44:2546–2556. doi: 10.1177/0363546516652607
24. Saithna A., Thaunat M., Delaloye J.R., Ouanezar H., Fayard J.M., Sonnery-Cottet B. Combined ACL and Anterolateral Ligament Reconstruction. *JBJS Essent. Surg. Tech.* 2018;8:e2. doi: 10.2106/JBJS.ST.17.00045
25. Neri T., Dabirrahmani D., Beach A., Grasso S., Putnis S., Oshima T., Cadman J., Devitt B., Coolican M., Fritsch B., et al. Different anterolateral procedures have variable impact on knee kinematics and stability when performed in combination with anterior cruciate ligament reconstruction. *J. ISAKOS.* 2021;6:74–81. doi: 10.1136/jisakos-2019-000360

26. Figueroa D, Gonzalez W, Figueroa L, Figueroa F, Vaisman A. Complications in anterior cruciate ligament reconstruction. *J Clin Orthop Trauma*. 2024 Dec 17;61:102876. doi: 10.1016/j.jcot.2024.102876. PMID: 39816721; PMCID: PMC11731265.
27. Saithna A, Thaunat M, Delaloye JR, Ouanezar H, Fayard JM, Sonnery-Cottet B. Combined ACL and Anterolateral Ligament Reconstruction. *JBJS Essent Surg Tech*. 2018 Jan 10;8(1):e2. doi: 10.2106/JBJS.ST.17.00045. PMID: 30233974; PMCID: PMC6143299.
28. Cheng YH, Chiu CH, Chen AC, Chan YS, Hsu KY. Outcomes of Combined Anterior Cruciate Ligament and Anterolateral Ligament Reconstruction According to GNRB Arthrometer Measurement. *Medicina (Kaunas)*. 2023 Feb 14;59(2):366. doi: 10.3390/medicina59020366. PMID: 36837568; PMCID: PMC9966521.
29. LEMAIRE, M. Ruptures anciennes du ligament croisé antérieur du genou. *J Chir*, 1967, 93.3: 311-320.
30. Ayeni OR, Chahal M, Tran MN, Sprague S. Pivot shift as an outcome measure for ACL reconstruction: a systematic review. *Knee Surg Sports Traumatol Arthrosc*. 2012 Apr;20(4):767-77. doi: 10.1007/s00167-011-1860-y. Epub 2012 Jan 5. PMID: 22218828.
31. Delaloye JR, Hartog C, Blatter S, Schläppi M, Müller D, Denzler D, Murar J, Koch PP. Anterolateral Ligament Reconstruction and Modified Lemaire Lateral Extra-Articular Tenodesis Similarly Improve Knee Stability After Anterior Cruciate Ligament Reconstruction: A Biomechanical Study. *Arthroscopy*. 2020 Jul;36(7):1942-1950. doi: 10.1016/j.artthro.2020.03.027. Epub 2020 Apr 3. PMID: 32251683.
32. Haus A, Chand A, Dawson K, Lang S, Gilmer BB, Wahl CJ. Modified Lemaire Lateral Extra-Articular Tenodesis Using an Inlay Technique and All-Suture Knotless Anchor Fixation. *Arthrosc Tech*. 2023 Aug 28;12(9):e1607-e1613. doi: 10.1016/j.eats.2023.05.004. PMID: 37780650; PMCID: PMC10533872.
33. Getgood A. Editorial Commentary: Indications for Lateral Extra-Articular Tenodesis in Primary Anterior Cruciate Ligament Reconstruction. *Arthroscopy*. 2022 Jan;38(1):125-127. doi: 10.1016/j.artthro.2021.07.005. PMID: 34972553.
34. Zabrzynski J, Kwapisz A, Erdmann J, Zabrzynska M, Błachowski M, Ohla J, Adamczyk M, Sokołowski M, Majchrzak B, Huri G. Indications for Lateral Extra-articular Tenodesis in Anterior Cruciate Ligament Reconstruction: A Systematic Review. *Am J Sports Med*. 2025 Feb 4:3635465241309282. doi: 10.1177/03635465241309282. Epub ahead of print. PMID: 39903008.
35. Zabrzynski, J., Erdmann, J., Zabrzynska, M. et al. Are there any complications after lateral extra-articular tenodesis in anterior cruciate ligament reconstruction? – a systematic review. *J Orthop Surg Res* 20, 451 (2025).
36. Devitt B.M., Bouguennec N., Barfod K.W., Porter T., Webster K.E., Feller J.A. Combined anterior cruciate ligament reconstruction and lateral extra-articular tenodesis does not result in an increased rate of osteoarthritis: A systematic review and best evidence synthesis. *Knee Surg. Sports Traumatol. Arthrosc.* 2017;25:1149–1160. doi: 10.1007/s00167-017-4510-1.