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ABSTRACT 

Background: Precision medicine, driven by advances in genomics, is reshaping the approach to diagnosis, risk assessment, 
and treatment planning in cardiac surgery. By analyzing genetic variation and molecular pathways, clinicians can move 
beyond standardized protocols toward individualized surgical care. 
Methods: This review synthesizes recent literature on the integration of genomic technologies - such as whole genome 
sequencing, gene expression profiling, and pharmacogenomics - into the preoperative, intraoperative, and postoperative 
phases of cardiac surgery. Sources include peer-reviewed articles, clinical trial data, and translational research reports 
published over the past 20 years. 
Results: Genomic profiling enables improved risk stratification, early detection of hereditary cardiovascular diseases, and 
identification of genetic biomarkers predictive of surgical outcomes. Pharmacogenomic insights allow optimization of 
perioperative drug therapy, reducing complications and enhancing recovery. Emerging applications include bioinformatics-
driven surgical planning and integration of multi-omic data for real-time decision support. However, challenges remain 
regarding data interpretation, ethical considerations, and integration into clinical workflows. 
Conclusion: Precision medicine and genomics hold significant promise for improving patient-specific outcomes in cardiac 
surgery. Their successful implementation will require robust clinical evidence, interdisciplinary collaboration, and 
infrastructure to manage and interpret complex genomic data. Ongoing research is likely to expand their role from risk 
prediction to fully individualized surgical strategies. 
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1. Introduction & Background: 

Over the past decades, cardiac surgery has undergone remarkable progress, driven by advances in 

operative techniques, perioperative management, and medical technology. These innovations have contributed 

to higher survival rates and better quality of life for individuals with complex cardiovascular disease. 

Nevertheless, surgical planning and postoperative care have traditionally been guided by population-based 

recommendations, which may overlook significant differences in patient biology, coexisting conditions, and 

responses to treatment. As a result, a uniform “one-size-fits-all” treatment approach can lead to suboptimal 

outcomes in certain cases, highlighting the importance of developing more individualized therapeutic 

strategies. Precision medicine: According to The US National Human Genome Research Institute precision 

medicine integrates an individual’s genomic profile, environmental exposures, and lifestyle and uses that 

information for personalized diagnostic, and preventive strategies (Delpierre & Lefevre, 2023). Collected data 

also help with the modification of therapeutic strategies driven by detailed clinical evaluation of the patient’s 

phenotype(Sethi et al., 2023). Precision medicine reaches beyond population - based protocols seeking 

optimalization of therapeutic efficacy while minimizing adverse effects. Heterogeneity of diseases 

manifestations, their prevalence and treatment options make precision medicine particularly useful in 

cardiology. Genomics: Genome-wide association studies (GWAS) analyze genetic variants of multiple 

genomes to identify those with a significant statistical correlation to a given trait or disease (Uffelmann et al., 

2021). By using GWAS data, it is possible to identify specific gene variants associated with e.g., perioperative 

myocardial infarction (MI) (Kertai, Li, Li, et al., 2015) or new-onset atrial fibrillation (AF) (Kertai, Li, Ji, et al., 

2015) after coronary artery bypass surgery. In addition to GWAS, polygenic risk scores (PRS) estimate genetic 

predisposition to a particular disease and was used to predict e.g., adverse outcomes - AF, MI, stroke or bleeding 

complication after coronary revascularization (Aittokallio et al., 2022). Rapid advances - such as next-generation 

(NGS) and whole-genome sequencing (WGS) - are enhancing the diagnostic yield in conditions like congenital 
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heart disease (CHD), with growing evidence that genome sequencing can inform personalized risk stratification 

following cardiac surgery. The integration of precision medicine and genomics into cardiac surgery offers 

numerous opportunities. Preoperatively, it can help with the selection of surgical techniques and perioperative 

protocols by identifying patients at higher risk for complications such as arrhythmia, thrombosis, or impaired 

wound healing. Intraoperatively, awareness of genetic influences on myocardial protection, inflammatory 

responses, and anaesthesia metabolism can force personalized management strategies. Postoperatively, it can 

contribute to optimizing pharmacotherapy, and improving long-term outcomes. This publication aims to describe 

the role of precision medicine and genomics in cardiac surgery. It will summarize not only practical applications 

and new technologies, but also their limitations and challenges. 

 

2. Key Principles and Technologies: 

2.1 Multi-Omics Integration 

The paradigm of precision medicine as applied to cardiac surgery has advanced to incorporate a 

comprehensive spectrum of “omics” data, which includes not merely genomics but also transcriptomics, 

epigenomics, proteomics, metabolomics, and microbiomics (Gu et al., 2022; Zhan et al., 2023). The methodical 

integration of these disparate and dynamic datasets facilitates a process designated as “deep phenotyping,” a 

practice that affords a more granular and exhaustive comprehension of an individual's biological state and 

specific disease characteristics than could be achieved through genomics alone (Chahal et al., 2025). Such a 

multi-omics methodology is conceptualized to surmount the inherent limitations of single-omics analyses, 

which are capable of providing only a static representation of a biological system. Through the superimposition 

of multiple strata of biological information, it becomes possible for clinicians to construct a more complete 

elucidation of the molecular alterations and pathway perturbations that underlie cardiovascular pathologies, 

thereby culminating in more precise diagnostic and therapeutic modalities (Zhan et al., 2023). This integrated 

approach provides a more holistic view of disease, capturing the complex interplay between an individual's 

genetic predispositions and environmental or lifestyle factors that collectively influence cardiovascular health 

(Palaparthi et al., 2025). 

 

2.2 Genetic Testing 

Genetic testing represents an indispensable component in the corroboration of clinical diagnoses across a 

range of heritable cardiovascular conditions, among which are cardiomyopathies, channelopathies, and 

aortopathies (Biernacka et al., 2024). Its principal function is the clarification of clinical or phenotypic diagnoses, 

a matter of particular consequence in clinical scenarios characterized by overlapping features or atypical 

presentations wherein a definitive diagnosis proves challenging (Balakrishnan et al., 2024). By way of example, 

genetic analysis possesses invaluable utility in the differentiation of idiopathic hypertrophic cardiomyopathy 

(HCM) from its phenocopies, such as Fabry disease or transthyretin cardiac amyloidosis, conditions that are 

associated with entirely distinct prognoses and management pathways (Nomura & Ono, 2023). 

Following the identification of a pathogenic or likely pathogenic variant in an index patient, the 

implementation of cascade genetic testing is unequivocally recommended for all at-risk biological relatives 

(Biernacka et al., 2024; Musunuru et al., 2020). This proactive screening protocol is of critical importance for 

identifying asymptomatic familial individuals who may harbour the same etiologic variant. Such identification 

permits the institution of regular clinical surveillance and preventative interventions for those who test positive, 

whereas relatives who test negative can frequently be exonerated from intensive, lifelong clinical observation, 

a resolution that provides considerable psychological relief and concurrently conserves healthcare resources 

(Biernacka et al., 2024). 

The outcomes of genetic assessments exert a direct and substantial impact on clinical management and 

therapeutic decision-making (Musunuru et al., 2020). For instance, individuals who carry certain genetic 

variants associated with Loeys-Dietz syndrome or specific pathogenic ACTA2 variants are understood to be at 

an elevated risk for aortic dissection at smaller aortic diameters; consequently, clinical guidelines recommend 

the consideration of earlier prophylactic aortic surgery for these persons in comparison to the standard 

thresholds applied in cases of Marfan syndrome (Biernacka et al., 2024). In a similar fashion, the identification 

of particular genotypes in cardiomyopathies, such as those affecting the DSP or LMNA genes, may reveal a 

heightened risk for malignant arrhythmias, thereby lowering the threshold for the implantation of a primary 

prevention implantable cardioverter-defibrillator (Balakrishnan et al., 2024; Nomura & Ono, 2023). 

Advancements in genetics have significantly enhanced the comprehension of the underlying 

pathomechanisms of cardiovascular diseases, thereby preparing the way for the development of highly targeted, 
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gene-specific therapeutic interventions (Biernacka et al., 2024). To illustrate, research that utilizes gene-editing 

technologies such as CRISPR has demonstrated the potential for correcting disease-causing variants in induced 

pluripotent stem cell-derived cardiomyocytes. This development presents future therapeutic possibilities, 

including the fabrication of personalized, genetically corrected grafts for the treatment of conditions like 

hypoplastic left heart syndrome, with the fundamental objective of rectifying the root etiology of the disease 

rather than merely managing its symptomatic manifestations (Geddes et al., 2020). 

 

2.3 Pharmacogenomics (PGx) 

Pharmacogenomics, the discipline concerned with investigating the influence of an individual's genetic 

constitution on pharmacological responses, affects both therapeutic efficacy and the risk of adverse reactions 

(Bhoyar & Nirmal Chandu, 2025; McDonough, 2021). The central objective of this field is the identification 

of specific genomic markers, such as single nucleotide polymorphisms, that exhibit a correlation with 

interindividual variability in drug response, knowledge which facilitates the formulation of safer and more 

efficacious medication strategies tailored to a patient's genetic profile (Bhoyar & Nirmal Chandu, 2025; 

McDonough, 2021). This area is of particular import to cardiovascular medicine, wherein genetic variability 

in loci encoding drug-metabolizing enzymes (for instance, the cytochrome P450 family), transporters, and 

therapeutic targets can substantially alter the efficacy and toxicity of widely prescribed medicaments. 

Archetypal examples include the anticoagulant warfarin, for which variants in CYP2C9 and VKORC1 

influence dosing requirements, and the antiplatelet agent clopidogrel, the bioactivation of which is contingent 

upon the function of the CYP2C19 enzyme (McDonough, 2021). Polymorphisms in genes such as ADRB1 

(beta-1 adrenergic receptor) and CYP2D6 have also been shown to significantly affect patient responsiveness 

to beta-blocker therapy in heart failure (Palaparthi et al., 2025). Moreover, PGx testing can inform the 

administration of lipid-lowering therapies; variants in the SLCO1B1 gene, for example, are associated with an 

augmented risk of myopathy in patients prescribed simvastatin, and such genetic information can guide safer 

prescribing practices (McDonough, 2021). 

 

2.4 Artificial Intelligence (AI) and Machine Learning (ML) 

The processing and interpretation of the voluminous and complex data generated by genomic and multi-

omics inquiries necessitate the application of computational technologies of fundamental importance, namely 

Artificial Intelligence (AI) and Machine Learning (ML) (Olawade et al., 2024). AI and ML algorithms are capable 

of identifying recondite patterns within large datasets, predicting disease risks, facilitating the discovery of novel 

biomarkers, and optimizing therapeutic strategies (Palaparthi et al., 2025). Within the context of cardiac surgery, 

ML models have demonstrated superior predictive capabilities for outcomes such as mortality and postoperative 

complications when compared to traditional scoring systems like EuroSCORE II (Gadhachanda et al., 2025; 

Leivaditis et al., 2025). These advanced analytical systems can integrate extensive patient data - including genetic 

profiles, imaging results, and clinical histories - to produce individualized risk assessments that inform clinical 

decision-making with greater precision. For example, ML models can analyse complex medical images with a 

level of detail that may surpass human capacity, improving diagnostic accuracy for conditions identifiable 

through echocardiography, MRI, and CT scans (Olawade et al., 2024). 

 

2.5 Single-Cell Genomics 

By permitting the deconvolution of complex tissues into their constituent cell types and states, the 

analysis of gene expression at the single-cell level, primarily through single-cell RNA sequencing (scRNA-

seq), affords an unprecedented insight into the cellular heterogeneity that characterizes cardiac tissues and the 

molecular mechanisms of disease (Chaudhry et al., 2019; Yu et al., 2023). This technology reveals unique 

transcriptional signatures associated with both normal physiology and pathological conditions such as 

myocardial infarction and heart failure, which are often obscured in bulk tissue analyses (Chaudhry et al., 

2019). The resultant detailed cellular maps are instrumental in identifying novel and rare cell subpopulations, 

such as distinct fibroblast and macrophage subtypes involved in cardiac fibrosis and atherosclerosis. This 

allows for a deeper understanding of their functional roles and the elucidation of the intercellular 

communication networks that drive cardiac development and disease progression (Yu et al., 2023). 
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2.6 CRISPR and Gene Editing 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), particularly the CRISPR-Cas9 

system, represents an emergent gene-editing technology with the potential to correct the specific genetic 

defects that underlie many inherited cardiac conditions. This technology enables the precise modification of 

DNA sequences, offering a therapeutic avenue for directly targeting and repairing disease-causing mutations 

through mechanisms such as homology-directed repair (HDR). Although preclinical studies have demonstrated 

its utility in correcting mutations associated with conditions such as hypertrophic cardiomyopathy and 

Duchenne muscular dystrophy in cellular and animal models, its clinical translation is contingent upon 

overcoming substantial challenges pertaining to in vivo delivery to cardiac tissue, the potential for off-target 

effects, and significant ethical considerations surrounding germline modifications. Nevertheless, CRISPR-

based technologies signify a promising frontier for developing curative, rather than merely palliative, 

treatments for genetic cardiovascular disorders (Bonowicz et al., 2025). 

 

3. Applications in Cardiac Surgery and Cardiovascular Disease Management 

3.1. Enhanced Diagnostic Assessment and Familial screening 

The application of polygenic risk scores (PRS), which aggregate the effects of numerous genetic variants 

across the genome, facilitates the identification of individuals with a heightened inherited susceptibility to 

cardiac conditions that may necessitate surgical intervention, such as coronary artery disease and inherited 

aortopathies. This approach can identify individuals whose genetic risk is equivalent to that conferred by a 

single monogenic mutation, often before traditional clinical risk factors become apparent (Viigimaa et al., 

2022). The integration of PRS with conventional clinical risk factors has been shown to enhance the accuracy 

of risk prediction, thereby enabling more targeted preventative strategies, such as earlier initiation of statin 

therapy, and informing the timing and nature of surgical consultations (Jain, 2017; Viigimaa et al., 2022). 

Genetic testing plays a pivotal role in clarifying diagnoses for diseases that present with similar clinical 

manifestations. For instance, it can accurately differentiate various underlying causes of cardiac hypertrophy, 

such as TTR amyloidosis, Fabry disease, or sarcomeric hypertrophic cardiomyopathy (HCM) (Harper et al., 

2017). According to the American Heart Association genetic testing is recommended for conditions such as 

HCM, DCM, Long QT Syndrome, Brugada Syndrome, thoracic aortic aneurysms, Catecholaminergic 

Polymorphic Ventricular Tachycardia (CPVT) and familial hypercholesterolemia (FH) to support familial 

screening (Musunuru et al., 2020). In rare and familial forms of cardiovascular disease (CVD), the 

identification of single-gene mutations has become increasingly accurate, enabling the development of 

clinically valuable diagnostic tests for inherited cardiomyopathies, arrhythmias, and aortic disorders (Marian 

et al., 2016). The proactive identification of genetic causes is critical not only for the patient but also for 

protecting other family members from the consequences of a missed diagnosis, informing crucial decisions 

about family screening and planning (Dainis & Ashley, 2018). 

Whole-exome sequencing has emerged as a useful tool in the study of CHD, successfully identifying a 

spectrum of detrimental genetic variations, including single nucleotide variants and copy number changes, that 

contribute to disease pathogenesis. This approach systematically interrogates the protein-coding regions of the 

genome, allowing for the detection of both rare and novel mutations associated with CHD. Complementary to 

these genomic discoveries, single-cell transcriptomics has revolutionized our understanding of CHD at a 

cellular level. By providing a high-resolution view of gene expression within individual cells, this technology 

has enabled the precise characterization of cell-type-specific transcriptional profiles in cardiac tissues. It can 

pinpoint which specific cell types are most affected by a genetic mutation. For example, it might show that a 

mutation alters the gene expression only in the cardiac progenitor cells that are responsible for forming the 

heart's valves, thus explaining why a patient has a specific valvular defect (Nappi, 2024). 

 

3.2. Risk Stratification and Prognosis 

Genomic information facilitates a more refined pre-operative risk assessment through the incorporation 

of an individual's genetic predispositions to specific complications, such as acute kidney injury following 

cardiac surgery, or to adverse reactions to anaesthetic or supportive medications (Leivaditis et al., 2025). 

Machine learning models that integrate both clinical and genetic data have demonstrated an ability to predict 

a range of postoperative outcomes - including mortality, length of stay, and delirium - with greater accuracy 

than traditional risk models (Gadhachanda et al., 2025; Leivaditis et al., 2025). This provides a more 

personalized basis for surgical planning, resource allocation, and patient counselling regarding procedural risks 

and expected recovery trajectories (Gadhachanda et al., 2025). 
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Genomics offers insights into specific disease-causing pathways, which support biomarker-based 

precision diagnostics and allow for more accurate prognosis stratification. In inherited cardiac conditions (ICCs) 

like Long QT Syndrome (LQTS), identifying the underlying genetic mutation can significantly influence clinical 

management and help evaluate the risk of sudden cardiac death (Giudicessi & Ackerman, 2013). LQT1, caused 

by pathogenic variants in the KCNQ1 gene, results in dysfunction of the IKs potassium channel and carries the 

highest risk of sudden cardiac death (SCD) during conditions of heightened sympathetic activity, particularly 

vigorous physical exertion such as swimming. Although overall mortality is lower in LQT1 than in LQT3, the 

risk of arrhythmic events increases markedly with activities that elevate catecholamine levels, especially in males 

under 15 years, adult females, and individuals with a history of syncope or markedly prolonged QTc (>500 ms) 

(Choi et al., 2004; Schwartz et al., 2012). LQT2, linked to mutations in the KCNH2 gene and impairment of the 

IKr potassium channel, is most often associated with SCD precipitated by sudden auditory or emotional stimuli, 

typically occurring at rest or during sleep. Risk is greatest in females, particularly during adulthood and the 

postpartum period, with triggers including abrupt loud noises (e.g., alarm clocks, telephones) and emotional 

distress (Schwartz et al., 2012). LQT3, resulting from gain-of-function mutations in the SCN5A gene and 

augmentation of the late sodium current, presents with fewer events than LQT1 or LQT2 but a substantially 

higher case fatality rate. Arrhythmias in LQT3 are frequently bradycardia-dependent, occurring most often during 

sleep or rest, with carriers of specific high-risk variants, such as the ΔKPQ mutation, demonstrating particularly 

high lethality regardless of QTc duration (Nagatomo et al., 2002; Perez-Riera et al., 2018; Wilde et al., 2016). 

Particular genotypes (such as LQT1, LQT2, and LQT3) can guide the selection of the most suitable medications; 

for example, mexiletine can be used in LQT3, and nadolol is the most effective β-blocker in LQT2 (Abu-Zeitone 

et al., 2014; Mazzanti et al., 2016). 

Genomic risk scores (GRS), also known as polygenic risk scores, represent a key innovation in this field. 

These scores integrate information from a large number of common genetic variants to quantify an individual's 

cumulative genetic predisposition to complex, multifactorial diseases such as coronary artery disease (CAD). 

GRS can identify individuals at high genetic risk for CAD, even in the absence of traditional risk factors like 

dyslipidemia or hypertension. This is particularly valuable for identifying "silent" high-risk individuals who 

would be missed by conventional risk calculators. A high GRS can serve as a powerful catalyst for both patient 

and clinician action. For patients, understanding their elevated genetic risk can significantly enhance their 

motivation to adopt lifestyle modifications (e.g., diet, exercise, smoking cessation) (Hasbani et al., 2022; 

Naderian et al., 2025). For clinicians, a high GRS can justify the earlier initiation of preventative therapies, 

such as statin treatment, in individuals who might otherwise not meet the criteria for such interventions based 

on age or lipid levels alone (Kullo et al., 2016). 

Familial hypercholesterolemia is characterized by elevated plasma low-density lipoprotein cholesterol 

(LDL-C) and early coronary heart disease onset. FH has a monogenic autosomal dominant transmission, and 

molecular diagnosis implies a higher cardiovascular risk for index cases and relatives. It is caused by 

pathogenic variants in three main genes: LDLR, APOB, and PCSK9 which are linked to the autosomal 

dominant form of the disorder. Individuals with FH need prompt, intensive, and long-term lipid-lowering 

treatment to decrease the incidence of atherosclerotic cardiovascular disease (Bouhairie & Goldberg, 2015). A 

study conducted by Jones et al. revealed that after genomic information on FH was disclosed, changes were 

observed in clinician practices, patient behaviours, and intermediate outcomes. Clinicians enhanced lipid-

lowering treatments, while patients pursued genetic counselling, underwent lipid testing, and showed improved 

adherence to their lipid-lowering medications. Consequently, lipid levels decreased, and more patients 

achieved their target cholesterol goals (Jones et al., 2022). On the other hand, according to Mizuta & Santos, 

screening the general population for FH is not currently cost-effective based on existing willingness-to-pay 

thresholds. Nevertheless, lowering the cost of testing, screening individuals at younger ages, or incorporating 

FH testing into wider multiplex screening panels could enhance both its clinical benefits and economic value 

(Mizuta & Santos, 2025). 

 

3.3. Personalized Treatment Strategies and Surgical Planning 

Genomic information plays a crucial role in helping clinicians select appropriate therapies and determine 

the optimal timing for surgical procedures. In certain inherited connective tissue disorders involving 

pathogenic variants in genes such as ACTA2, MYH11, or TGFBR2, genetic results may justify recommending 

surgical repair of an aortic aneurysm at a smaller diameter than standard guidelines would typically advise 

(Kostiuk et al., 2018). 
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Inherited connective tissue diseases, such as Marfan syndrome and Loeys-Dietz syndrome, predispose 

individuals to thoracic aortic aneurysms and dissections. Genetic variants play a pivotal role in determining 

the optimal timing for aortic repair surgeries (Chou & Lindsay, 2020). Marfan syndrome is primarily associated 

with mutations in the FBN1 gene, leading to abnormal fibrillin-1 protein. Studies have shown that individuals 

with certain FBN1 mutation ( HI-FBN1) experience more rapid aortic dilation, necessitating earlier surgical 

intervention (Franken et al., 2017). Loeys-Dietz syndrome is caused by mutations in the TGFBR1, TGFBR2, 

SMAD2, or SMAD3 genes. These mutations lead to dysregulated TGF-β signaling, resulting in vascular 

fragility. The timing of aortic repair in Loeys-Dietz syndrome is influenced by the specific genetic variant 

present, with certain mutations (TGFBR1 and TGFBR2) associated with more aggressive disease progression 

(Chou & Lindsay, 2020).  

In pediatric cardiac surgery, genomic sequencing is rapidly emerging as a pivotal tool for forecasting 

post-operative outcomes, supplementing traditional risk stratification approaches that have historically relied 

on clinical variables such as the type and complexity of CHD and the patient’s overall health status. Growing 

evidence indicates that damaging variants in chromatin-modifying genes-responsible for regulating DNA 

packaging and expression and cilia-related genes which are critical for cellular structures involved in 

development are strongly associated with increased rates of mortality, cardiac arrest, and prolonged mechanical 

ventilation following congenital cardiac surgery (Garrod et al., 2014; Watkins et al., 2025). These genetic 

vulnerabilities, which may impair organ development and compromise resilience to surgical stress, exert their 

greatest influence in patients with complex CHD phenotypes, those undergoing technically demanding 

operations, and individuals with extra-cardiac anomalies, where they act synergistically with surgical and 

physiological stress to amplify risk. Conversely, the absence of such high-risk genotypes can indicate a 

substantially reduced likelihood of adverse events, offering prognostic reassurance. By integrating genomic 

data with established clinical assessments, surgical teams can achieve more precise risk stratification, optimize 

operative planning, and individualize perioperative management - advancing the principles of precision 

medicine in the care of children with CHD (Landstrom et al., 2021; Watkins et al., 2025).  

Krane et al. reported that in severe conditions such as Hypoplastic Left Heart Syndrome (HLHS), 

precision genetics may enable prediction of which fetuses with early-stage HLHS are most likely to benefit 

from high-risk prenatal procedures such as balloon aortic valvuloplasty by identifying their specific underlying 

genetic abnormalities (Krane et al., 2021). 

Genetic information was primarily used to retrospectively understand disease mechanisms or to confirm 

diagnoses. However, contemporary practice shows a clear shift toward a more proactive and forward-looking 

role, particularly in surgery. Genetic testing now plays a crucial role in guiding targeted therapies and 

determining the optimal timing for surgical interventions. Notably, genome sequencing - especially when 

integrated with artificial intelligence - has the capability to predict clinical outcomes following congenital 

cardiac surgery. This marks a significant advancement, transforming genomics from a tool for diagnosis or 

explanation into one that actively predicts and guides treatment, thereby improving surgical decision-making, 

patient selection, preoperative risk evaluation, and intraoperative management to enhance both precision and 

safety (Dainis & Ashley, 2018).  

 

3.4. Novel Therapeutic Development 

Although this discussion centers on cardiac surgery, the evidence consistently emphasizes the 

emergence of targeted and mechanism-based medical therapies that may eliminate the necessity for some 

invasive procedures. These medical advancements could potentially reduce the need for surgery, alter its 

timing, or even change the extent of surgical intervention required (Gelb, 2022). For example, preventing 

calcific aortic valve disease through medical means could significantly delay or entirely avoid the need for 

valve replacement surgery. 

Targeted therapies - including antibody-based therapies, advanced gene editing and gene silencing 

techniques are either already in use or being actively developed for various genetic cardiovascular disorders 

such as LQTS (Wilde et al., 2022), Duchenne muscular dystrophy (DMD) (de Boer et al., 2022), transthyretin 

(TTR) cardiac amyloidosis (Benson et al., 2017), Fabry disease (El Dib et al., 2017) and Pompe disease (van 

Capelle et al., 2018). 

Andelfinger et al. reported the treatment of two critically ill infants with Noonan syndrome caused by 

gain-of-function mutations in the RIT1 gene, who presented with severe hypertrophic cardiomyopathy, using 

the MEK inhibitor trametinib. This treatment also normalized dysplastic pulmonary valve leaflets, 

demonstrating genotype-specific precision medicine (Andelfinger et al., 2019). Another promising area 
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involves restoring NOTCH signalling in patients with bicuspid aortic valve (BAV) linked to NOTCH1 

mutations, aiming to prevent or slow valve calcification - an approach that might serve as an effective treatment 

for many affected individuals (Garg et al., 2005; Nigam & Srivastava, 2009). Table 1 summarizes the 

utilization of genomics in several genetic diseases related to the heart. 

 

Table 1. Specific Genetic Conditions and Their Surgical/Therapeutic Implications 

 

Genetic Condition 
Genomic 

Understanding/Implication 
Impact on Surgery/Treatment Sources 

Inherited Connective 

Tissue Disease 

(ACTA2, MYH11, 

TGFBR2 variants) 

Genetic variants prompt 

consideration of surgical 

intervention at smaller aortic 

aneurysm diameters. 

Directly influences surgical timing 

and approach. 

(Kostiuk et 

al., 2018) 

Congenital Heart 

Defects (CHD) (e.g., 

Tetralogy of Fallot, 

Transposition of 

Great Arteries, 

chromatin-

modifying/cilia-

related genes) 

Damaging genotypes predict 

adverse post-operative 

outcomes (mortality, cardiac 

arrest, prolonged ventilation); 

genetic insights guide family 

screening and planning. 

Predicts post-operative risk, informs 

family screening and planning. 

(Watkins et 

al., 2025) 

Hypoplastic Left 

Heart Syndrome 

(HLHS) 

Genetic studies suggest 

prediction of benefit from in 

utero balloon aortic 

valvuloplasty. 

Impacts pre-natal intervention 

decisions. 

(Krane et al., 

2021) 

Noonan Syndrome 

(RIT1 gain-of-

function) 

RIT1 gain-of-function alleles 

lead to successful treatment 

of severe HCM and 

pulmonary valve issues with 

MEK inhibitor. 

Offers non-surgical alternatives 

(genotype-specific precision 

medicine). 

(Andelfinger 

et al., 2019; 

Ilic et al., 

2024) 

Bicuspid Aortic 

Valve (BAV) 

(NOTCH1 variants) 

NOTCH1 variants suggest 

potential for restoring 

NOTCH signaling to prevent 

or slow valve calcification. 

Potential to obviate or delay surgery. 

(Garg et al., 

2005; Nigam 

& Srivastava, 

2009) 

Hypertrophic 

Cardiomyopathy 

(HCM), Dilated 

Cardiomyopathy 

(DCM), Arrhythmias 

(LQTS, Brugada, 

CPVT) 

Genetic testing clarifies 

diagnosis, facilitates familial 

cascade screening. 

Clarifies diagnosis, enables precise 

risk stratification, guides selection of 

targeted medical therapies. 

(Moore et al., 

2025; 

Verdonschot 

et al., 2019; 

Wilde et al., 

2022) 

 

4. Challenges and Future Directions: 

The transition from a population-centric to a personalized, genomics-driven approach in cardiac surgery 

is not without significant challenges. Realizing the full potential of precision medicine requires concerted 

efforts to overcome technical, logistical, and ethical hurdles. A fundamental challenge lies in the effective 

integration and analysis of the massive and diverse datasets generated from various "omics" platforms, 

including genomics, transcriptomics, and proteomics. These platforms produce high-dimensional data that 

must be synthesized to create a coherent and clinically actionable patient profile. Rigorous validation studies 

and the development of clear clinical guidelines are essential to ensure the safe and effective application of 

these discoveries in practice (Dainis & Ashley, 2018). As genomic data becomes more central to clinical care, 
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so too do the ethical and sociopolitical challenges surrounding its use. Key issues include maintaining patient 

data privacy and confidentiality, preventing genetic discrimination by employers or insurers, and ensuring 

equitable access to precision medicine technologies for all patients, regardless of their background (Mudd-

Martin et al., 2021). The efficacy and cost-effectiveness of personalized medicine approaches in cardiac 

surgery cannot be assumed. The field requires a new generation of large-scale, well-designed clinical trials 

that are appropriately powered to demonstrate the clinical utility of genomic-guided therapies. These trials 

must be designed to account for genetic heterogeneity and patient-specific risk profiles, providing the robust 

evidence needed for widespread clinical adoption (Dainis & Ashley, 2018). Looking forward, the continued 

leveraging of AI and machine learning will be crucial for overcoming many of these challenges. AI can assist 

in identifying new genetic biomarkers, predicting disease progression with greater accuracy, and personalizing 

treatment plans by sifting through complex data that is unmanageable by human analysis alone. This 

technology has the potential to streamline data interpretation and accelerate the translational journey from 

discovery to clinical application (Krittanawong et al., 2017; Leivaditis et al., 2025). 

 

5. Conclusions 

Precision medicine and genomics are fundamentally reshaping the landscape of cardiac surgery and 

broader cardiovascular care. This transformation is driven by a profound shift from generalized to 

individualized patient management, enabled by advanced sequencing technologies, sophisticated AI-driven 

data analysis, and innovative biological tools like iPSCs and CRISPR. These advancements collectively lead 

to significantly enhanced diagnostic accuracy, the implementation of highly personalized treatment strategies, 

and ultimately, improved patient outcomes.  

Significant progress has been made, particularly in understanding and managing inherited and 

congenital heart conditions, where genomic understandings have direct implications for surgical planning, 

precise risk stratification, and the development of targeted therapies. 

The trajectory of precision medicine in cardiac surgery points towards continued technological 

innovation, deeper and more comprehensive integration of multi-omics data, and the development of 

increasingly sophisticated predictive models and novel mechanistic therapies. Addressing the remaining 

technical, ethical, and systemic barriers will be paramount to fully realize the immense promise of precision 

medicine, ensuring its benefits are broadly accessible and effectively integrated into the future of 

cardiovascular care for all patients. 
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