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ABSTRACT

Background: Atrtificial intelligence (Al) is reshaping the landscape of coronary artery disease (CAD) prevention through
its ability to enhance risk prediction, early detection, and individualized interventions.

Objective: This narrative review examines the current role of Al-based models in CAD prevention, evaluating their
predictive accuracy, clinical applications, and implementation challenges.

Methods: We synthesized evidence from recent systematic reviews, meta-analyses, and original studies on machine learning
(ML) and deep learning (DL) techniques using multimodal data such as electronic health records (EHR), electrocardiograms
(ECQG), and imaging.

Key Findings: Al models consistently outperform traditional risk scores like Framingham and ASCVD in predictive
performance, especially when multimodal data integration is applied. These models show particular promise in high-risk and
complex populations. Additionally, Al tools contribute to clinical decision-making, including revascularization planning and
precision phenotyping. However, critical limitations remain—most notably limited external validation, opacity in model
explainability, and bias stemming from non-representative datasets.

Conclusions: While Al offers transformative potential in CAD prevention, responsible deployment requires addressing
ethical, technical, and systemic challenges. Key strategies include improving model transparency, ensuring fairness across
populations, and embedding Al tools seamlessly into clinical workflows. The success of future systems will depend on
explainability, human-Al collaboration, and meaningful stakeholder engagement.

KEYWORDS

Artificial Intelligence, Coronary Artery Disease, Risk Prediction, Machine Learning, Multimodal Data Integration,
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Introduction.

Coronary artery disease (CAD) remains the leading cause of death and disability worldwide, with nearly 7
million deaths and 129 million disability-adjusted life years (DALYSs) attributed to it annually (Ralapanawa &
Sivakanesan, 2021; Yazdani et al., 2023). The burden is particularly high in the Americas, Europe, and the Eastern
Mediterranean, while in Africa and parts of Asia, stroke predominates as the leading cardiovascular condition
(Victor et al., 2025). Despite advances in both treatment and prevention, CAD continues to exact a substantial
clinical and economic toll, especially in low- and middle-income countries, where urbanization, dietary shifts, and
sedentary behavior are driving a rise in incidence (Ralapanawa & Sivakanesan, 2021; Victor et al., 2025).

Socioeconomic disparities significantly shape CAD outcomes. Populations with lower socioeconomic
status experience higher rates of premature cardiovascular death, compounded by limited access to healthcare,
preventive services, and healthy lifestyle opportunities (Ralapanawa & Sivakanesan, 2021; Victor et al., 2025).
As the global burden of CAD shifts toward less affluent regions, the need for scalable, equitable, and effective
prevention strategies becomes more urgent.

Primary prevention efforts face persistent and multifaceted challenges. Modifiable risk factors—
including hypertension, diabetes, dyslipidemia, obesity, smoking, and physical inactivity—remain highly
prevalent across diverse populations (Al-Khlaiwi et al., 2024; Ralapanawa & Sivakanesan, 2021; Victor et al.,
2025). At the same time, emerging contributors such as air and noise pollution, sleep disturbances, depression,
and social isolation are increasingly recognized for their role in cardiovascular risk (Victor et al., 2025). In
many settings, low levels of health literacy and limited education regarding prevention further complicate risk
reduction, particularly among vulnerable groups (Hart, 2024; Victor et al., 2025).
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Beyond individual-level factors, structural issues also hamper progress. Incomplete or inconsistent
epidemiological data limit the ability to target interventions effectively, and variability in the adoption of
evidence-based prevention guidelines across health systems weakens implementation (Ralapanawa &
Sivakanesan, 2021). Together, these factors underscore the need for prevention strategies that are not only
evidence-based but also context-sensitive.

Opportunities do exist. Digital and media-based education initiatives have shown promise in improving
knowledge, behavior, and modifiable risk profiles (Hart, 2024). Region-specific programs that address local
risk determinants and socioeconomic inequalities can enhance intervention effectiveness (Ralapanawa &
Sivakanesan, 2021; Victor et al., 2025). Strengthening health systems—by investing in workforce capacity,
increasing health literacy, and adopting life-course approaches to risk—offers a sustainable path toward burden
reduction (Victor et al., 2025).

In this context, artificial intelligence (Al) emerges as a potentially transformative tool. Through its
capacity to analyze large-scale health data, identify risk patterns, and support early, individualized
intervention, Al may help overcome current limitations in CAD prevention. However, its integration into
public health practice requires careful consideration of clinical relevance, validation, fairness, and ethical
deployment. This paper explores the promise and limitations of Al in CAD prevention, with particular focus
on predictive performance, equity, and policy implications.

Methodology

This narrative review was conducted using a structured search of three major academic databases:
PubMed, Google Scholar, and Scopus. The aim was to identify recent, high-quality literature addressing the
role of artificial intelligence in the prevention and risk prediction of coronary artery disease (CAD). The search
focused exclusively on peer-reviewed articles published within the last five years (2020-2025), to ensure
relevance to current clinical and technological standards.

Key search terms included combinations of: "artificial intelligence,” “machine learning,” “deep learning,”
“coronary artery disease,” “risk prediction,” ‘“‘cardiovascular prevention,” “explainability,” and “clinical
decision support.” Both systematic reviews and primary research articles were considered, including studies
involving electrocardiograms (ECG), imaging (e.g., CCTA, MRI), and electronic health records (EHR).

Articles were selected based on their methodological quality, clinical relevance, and contribution to the
understanding of Al-based predictive models. In total, 48 sources were included in the final synthesis. Special
attention was given to studies with external validation, multimodal data integration, ethical implications, and
implementation frameworks.

FENY

o w«

State of Knowledge

1. Al-Based Risk Prediction in CAD Prevention

Artificial intelligence (Al) has rapidly emerged as a transformative approach in coronary artery disease
(CAD) risk prediction, leveraging multimodal data such as electronic health records (EHR),
electrocardiograms (ECG), and cardiovascular imaging. Models built using machine learning (ML) and deep
learning (DL) techniques have demonstrated promising predictive capabilities, particularly when these
heterogeneous data sources are integrated.

In cardiac imaging, Al applications in modalities such as coronary CT angiography (CCTA), single-
photon emission computed tomography (SPECT), and cardiac MRI have yielded encouraging results for both
diagnostic and prognostic tasks. Deep learning approaches—especially convolutional neural networks—are
frequently employed, achieving high sensitivity and specificity in identifying obstructive CAD or estimating
future cardiovascular risk (Assadi et al., 2022; Baskaran et al., 2020; Cicek et al., n.d.; Jiang et al., 2020; Wang
et al., 2022). Nevertheless, many of these studies are limited by small sample sizes and a lack of external
validation, restricting their clinical generalizability.

Parallel advancements are evident in ECG-based Al modeling. Deep neural networks have demonstrated
the capacity to detect CAD and acute coronary syndromes with performance metrics comparable to
experienced clinicians (Alizadehsani et al., 2021; Bishop et al., 2024; Moreno-Sanchez et al., 2024). These
systems can uncover subtle waveform patterns imperceptible to the human eye, offering novel diagnostic
opportunities. However, concerns persist regarding the interpretability of DL models, potential algorithmic
bias, and the opacity of decision-making processes.

EHR-derived models represent another active area of development. ML algorithms—particularly tree-
based and ensemble methods—using routinely collected patient data (e.g., demographics, laboratory results,
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clinical history) have shown favorable performance in estimating CAD risk. Moreover, when EHR data are
integrated with imaging or ECG features, the resulting multimodal models often outperform single-source
models, highlighting the value of data fusion in risk stratification (Alizadehsani et al., 2021; Baskaran et al.,
2020; Garavand et al., 2023).

Multimodal Al approaches—those that integrate data from electronic health records (EHR), imaging
modalities, and electrocardiograms (ECG)—have been consistently shown to outperform unimodal models in the
prediction of coronary artery disease (CAD). By leveraging diverse and complementary inputs, these systems are
capable of identifying complex interactions and latent patterns that single-source models may overlook.

Several studies provide direct comparative evidence of this performance advantage. For instance, one
multimodal nomogram developed for chronic CAD achieved a high C-index of 0.78-0.79, reflecting strong
discriminatory ability and practical clinical relevance [17]. Another investigation demonstrated that removing
imaging data from an integrated model significantly degraded its performance—lowering the AUC from 0.779
to 0.705—underscoring the critical role of multimodal inputs in maintaining predictive strength [1].

Systematic reviews further support these findings. Meta-analyses of multimodal machine learning
applications in healthcare report an average 6.4% improvement in predictive accuracy over unimodal systems
[1, 2]. These enhancements are largely attributed to the models’ ability to synthesize heterogeneous clinical,
imaging, and laboratory data into more nuanced risk estimates.

Beyond statistical performance, multimodal models also offer important benefits in clinical utility. Their
ability to generate individualized and more robust risk assessments can enhance decision-making, reduce
diagnostic uncertainty, and potentially lower the rate of unnecessary interventions [1-3].

Despite this momentum, several barriers continue to impede clinical translation. Key challenges include
insufficient external validation, limited demographic and geographic diversity of training cohorts, and
inconsistent reporting standards. These issues raise concerns about generalizability, fairness, and
reproducibility (Carrasco-Ribelles et al., 2023; Suri, Bhagawati, Paul, Protogeron, et al., 2022; Wang et al.,
2022). To overcome them, researchers emphasize the importance of using larger, more representative datasets
and implementing standardized evaluation frameworks.

In summary, Al-based systems incorporating EHR, ECG, and imaging modalities are steadily advancing
toward clinical relevance in CAD prediction and prevention. Deep learning is central to this progress,
particularly in extracting complex patterns from high-dimensional data. Still, future efforts must focus on
improving model transparency, equity, and robustness to ensure safe and effective deployment in real-world
cardiovascular care.

2. Clinical Outcomes and Predictive Accuracy

Artificial intelligence (AI) models, particularly those based on machine learning (ML) and deep learning
(DL), have demonstrated consistent advantages over traditional cardiovascular risk scores—such as
Framingham or ASCVD—in predicting long-term coronary artery disease (CAD) outcomes. Meta-analyses
and systematic reviews report that Al models typically achieve higher C-statistics, ranging from 0.77 to 0.84,
compared to 0.73 to 0.76 for conventional scores, indicating improved discriminatory ability in predicting
outcomes such as mortality and major adverse cardiac events (MACE) (Gupta et al., 2024; Nayebirad et al.,
2025; Teshale et al., 2024; Tse et al., 2024).

These gains are especially evident in complex patient populations, including individuals undergoing
percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG), where standard models
often underperform (Gupta et al., 2024; Nayebirad et al., 2025). Deep learning models designed for survival
analysis—such as DeepSurv—and ensemble techniques like Random Survival Forests have shown particular
promise in modeling time-to-event outcomes (W. Liu et al., 2023; Teshale et al., 2024).

For example, in a meta-analysis of 27 studies encompassing over 568, 000 patients, ML models
outperformed conventional approaches with a pooled C-statistic of 0.82 (95% CI: 0.78—0.85), compared to
0.73 (95% CI: 0.70-0.75) for traditional methods (W. Liu et al., 2023). Similarly, Al approaches have shown
superior accuracy in predicting post-PCI complications such as bleeding risk, short- and long-term mortality,
and rehospitalization when compared to standard regression models (Teshale et al., 2024).

In addition to improving predictive performance metrics, Al-based risk stratification tools are
increasingly being evaluated for their potential to support real-world clinical decision-making in coronary
artery disease (CAD). Machine learning and deep learning algorithms can integrate diverse data sources—
such as clinical characteristics, imaging results, and genetic profiles—to generate individualized risk
assessments and identify patients who may benefit from intensified preventive or therapeutic strategies
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(Alizadehsani et al., 2021; Mohsen et al., 2023; Singh et al., 2024; Suri, Bhagawati, Paul, Protogerou, et al.,
2022). These capabilities position Al as a potential complement, or even alternative, to conventional tools in
delivering more tailored and precise care.

More advanced applications have extended into procedural decision-making. For instance, Al-enabled
tools such as the SYNTAX Score II 2020 leverage outcome prediction algorithms to guide the selection
between percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), thereby
facilitating more informed and personalized treatment planning (Takahashi et al., 2020). Additionally, Al has
shown promise in enhancing patient phenotyping, which may support precision medicine approaches in CAD
management and secondary prevention (Mohsen et al., 2023; Singh et al., 2024).

Nevertheless, despite these promising developments, current evidence for a direct impact of Al-guided
predictions on clinical outcomes remains limited. The majority of studies to date have emphasized
retrospective validation or improvements in statistical discrimination and reclassification, rather than
demonstrating effectiveness in prospective clinical settings. Future research, including randomized controlled
trials and implementation studies, will be essential to confirm the real-world utility and clinical benefit of Al-
assisted decision-making in cardiovascular care.

Building on these predictive capabilities, recent efforts have focused on translating Al outputs into
actionable clinical insights.

However, the clinical significance of these improvements remains a topic of discussion. While
statistically significant, the magnitude of gain in discrimination is often modest—particularly when models are
applied across broad, low-risk populations (Teshale et al., 2024; Tse et al., 2024). Furthermore, many Al
models have not undergone robust external validation, which limits confidence in their generalizability beyond
the development datasets (Cai et al., 2024; Gupta et al., 2024).

Another persistent limitation concerns interpretability. Particularly in deep learning architectures, the
decision-making processes remain largely opaque, which may reduce clinical trust and hinder integration into
workflows (Nayebirad et al., 2025; Teshale et al., 2024). Additionally, many models are trained on non-
representative or demographically narrow datasets, increasing the risk of bias and restricting their real-world
applicability (Cai et al., 2024; Nayebirad et al., 2025).

In summary, Al-based tools offer measurable improvements over conventional scores in CAD outcome
prediction—especially in high-risk or procedurally complex subgroups. Yet, challenges around validation,
transparency, and equitable performance must be addressed before these models can be responsibly integrated
into clinical care.

3. Explainability, Trust, and Human-AI Collaboration

As artificial intelligence (Al) systems become increasingly embedded in cardiovascular disease (CVD)
risk prediction, explainability and collaboration between humans and algorithms have emerged as essential
pillars for successful clinical integration. Building clinician trust depends not only on the accuracy of Al
models, but also on their interpretability, transparency, and alignment with real-world clinical workflows.

Clinicians are more likely to adopt Al-based tools when they understand how a model arrives at its
conclusions. Explainable Al (XAI) methods—such as SHAP (SHapley Additive exPlanations) and LIME
(Local Interpretable Model-Agnostic Explanations)—play a crucial role in rendering complex algorithms
interpretable. These tools help identify which variables contributed to a given prediction, enhancing
transparency and enabling clinicians to justify Al-supported decisions to patients, colleagues, and regulatory
bodies [29-32].

Beyond transparency, explainability contributes to safety and accountability in clinical settings. By
allowing practitioners to examine and challenge Al outputs, XAl helps identify potential errors or algorithmic
biases, thereby reducing reliance on opaque”black-box" models and mitigating the risk of harm [29-32].
Moreover, as healthcare regulations increasingly emphasize ethical deployment, explainability is becoming a
foundational requirement for approval and oversight of Al-driven clinical tools [1, 2].

Rather than replacing clinicians, Al should function as a decision support tool—enhancing human
judgment without overriding it. Effective human-Al collaboration enables systems to provide actionable
insights, such as highlighting influential features or calculating individualized risk scores, while preserving
clinician autonomy in final decision-making [1, 2].

Engaging clinicians throughout the Al lifecycle—from development and validation to continuous
monitoring—also ensures that models remain clinically meaningful and adaptable to dynamic healthcare
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environments. Such involvement fosters iterative improvement based on frontline feedback, improving both
model performance and relevance [1, 2].

Finally, integration into clinical workflows is critical. Al tools must not only be accurate but also
intuitive, with clear outputs that fit into time-constrained and high-stakes environments. Interpretable and
seamlessly integrated systems are more likely to be used consistently and effectively in practice [1, 2].

4. Social and Ethical Considerations

The use of Al in preventing coronary artery disease (CAD) carries clear potential, but it also raises
serious social and ethical questions. Among the most pressing concerns are bias in model design, unequal
access to Al-driven care, and the challenge of ensuring transparency and fairness.

Al systems developed for CAD prediction often replicate or even amplify existing disparities tied to
race, gender, or socioeconomic status. A recent review found evidence of racial or ethnic bias in 82% of
cardiovascular Al studies (Cau et al., 2025; Suri, Bhagawati, Paul, Protogeron, et al., 2022). These
discrepancies can translate into unequal risk assessments and, ultimately, unequal care. The problem often
stems from unrepresentative training data, flawed measurement inputs, or design choices that don’t account
for variation across populations. Notably, even traditional scores like Framingham have known biases - and
Al models may inherit or exacerbate them unless explicitly addressed (Cau et al., 2025; Chen et al., 2024;
Garcha & Phillips, 2023; Suri, Bhagawati, Paul, Protogeron, et al., 2022).

Beyond model bias, concemns regarding equitable access remain critical. Al-based prevention tools—
especially those relying on wearables, smartphones, or high-quality imaging—may be less accessible to low-income
or digitally excluded populations. Without deliberate efforts to ensure inclusion, such tools risk widening existing
health gaps rather than narrowing them (Al-Hwsali et al., 2023; Cau et al., 2025; Chen et al., 2024).

Efforts to address these challenges are increasingly reflected in the development of mitigation strategies
aimed at improving the fairness and transparency of Al models. Approaches such as the implementation of
fairness metrics, the use of demographically diverse training datasets, and the application of algorithmic audits
are being investigated to systematically identify and reduce bias within predictive systems (Chen et al., 2024).
Moreover, the integration of ethical principles during the design phase - commonly referred to as”ethics by
design” - emphasizes the importance of embedding transparency, accountability, and inclusivity into model
development from the outset (Al-Hwsali et al., 2023; Cartolovni et al., 2022; Morley et al., 2020).

In parallel, there is growing recognition of the need for regulatory frameworks that support ongoing
monitoring, standardized evaluation, and independent oversight of Al systems in healthcare settings (Al-
Hwsali et al., 2023; Cartolovni et al., 2022; Morley et al., 2020). These mechanisms are essential to ensure the
responsible and equitable deployment of Al interventions, particularly in contexts such as CAD prevention
where disparities in care can be inadvertently reinforced.

While most ethical debates focus on algorithmic bias and fairness in high-income countries, a crucial
yet underexplored issue concerns global disparities in access to Al-powered cardiovascular care. In low- and
middle-income countries (LMICs), limited infrastructure, inadequate digital literacy, and lack of regulatory
oversight may prevent equitable implementation of even well-calibrated Al models. Studies suggest that
without tailored deployment strategies, Al tools may reinforce existing global health inequalities by benefiting
already well-resourced systems while neglecting underserved populations. Addressing this requires context-
specific design, capacity building, and international collaboration to ensure that Al-driven CAD prevention
does not become a privilege of the few, but a scalable and inclusive solution for all settings (Al-Hwsali et al.,
2023; Cartolovni et al., 2022; Morley et al., 2020).

For Al to genuinely serve public health, it must be designed and implemented with equity in mind. That
means using diverse, high-quality datasets, actively mitigating bias during development, and applying clear
oversight to ensure fair outcomes. Without this foundation, even the most accurate systems may fail those who
need them most.

5. Integration into Public Health Systems

Integrating Al-based tools for cardiovascular prevention into public healthcare systems holds substantial
promise, but it also presents a set of complex challenges that must be addressed for widespread, equitable
adoption. While Al has the capacity to enhance early detection, personalize risk stratification, and streamline
preventive care, its implementation hinges on issues of data quality, model validation, interpretability, and
systemic integration.

e-ISSN: 2544-9435 6



3(47) (2025): International Journal of Innovative Technologies in Social Science

One of the primary barriers is the inconsistency and incompleteness of electronic health record (EHR)
data. Many clinical datasets lack standardization in both format and content, which limits the robustness and
reproducibility of AI models. Without common definitions for cardiovascular outcomes or harmonized data
structures, comparing or validating models across institutions becomes difficult (T. Liu et al., 2025; Moazemi
et al., 2023).

Generalizability is another concern. Numerous Al models are trained on narrowly defined or
demographically limited datasets and rarely undergo rigorous external validation. As a result, their
performance in real-world clinical settings—especially across diverse populations—remains uncertain (T. Liu
et al., 2025; Moazemi et al., 2023). The lack of model interpretability further complicates clinical integration.
When Al systems operate as”’black boxes, ™ clinicians may hesitate to rely on their recommendations, which
limits trust and adoption (T. Liu et al., 2025; Moazemi et al., 2023).

Ethical and regulatory considerations compound these challenges. Uneven model performance across
racial, gender, or socioeconomic groups can inadvertently reinforce disparities in care. Transparent evaluation
standards, robust auditing mechanisms, and clearly defined regulatory pathways are essential to address these
concerns responsibly (Ahmed et al., 2025; T. Liu et al., 2025).

Successful integration of Al into healthcare workflows will also require substantial operational planning.
Embedding Al tools into existing systems calls for interoperability with health IT infrastructure, targeted clinician
training, and in some cases, redesigning clinical workflows. These efforts can be time- and resource-intensive,
particularly in under-resourced settings (Aminizadeh et al., 2024; T. Liu et al., 2025; Olawade et al., 2024).

Despite these obstacles, the potential benefits are considerable. Al can offer more precise cardiovascular
risk stratification by processing large-scale EHR and imaging data, improving upon traditional models (Ahmed
et al., 2025; Elvas et al., 2025; T. Liu et al., 2025). Earlier detection enabled by Al could reduce the need for
invasive diagnostics and lower costs while improving patient outcomes (Ahmed et al., 2025; Elvas et al., 2025).
The capacity to tailor prevention strategies and therapy plans to individual profiles enhances not only clinical
effectiveness but also patient engagement (Ahmed et al., 2025; Singh et al., 2024). Finally, integration with
wearables and remote monitoring technologies opens the door to continuous risk assessment and early
intervention outside of traditional care environments (Aminizadeh et al., 2024; Elvas et al., 2025).

To fully realize these benefits, future efforts must focus on improving data quality, validating models
across diverse settings, ensuring transparency, and investing in clinical infrastructure that supports ethical and
effective Al adoption.

6. Policy and Implementation Considerations

Deploying Al tools in cardiovascular disease prevention requires more than technological innovation -
it demands careful planning, ethical foresight, and inclusive policy development. To ensure that these systems
are safe, effective, and equitable in real-world use, several key areas must be addressed.

First, transparency is critical. Al models should be interpretable not only by developers but also by clinicians
and, where appropriate, by patients. Decision pathways must be explainable, and any limitations or data
dependencies clearly disclosed to support informed use (Goktas & Grzybowski, 2025; Siala & Wang, 2022).

Bias mitigation remains a central concern. Developers must ensure that models are trained on diverse,
representative datasets and regularly audited for disparities in performance across demographic groups.
Without this, Al could unintentionally reinforce existing health inequities rather than reduce them (Goktas &
Grzybowski, 2025; Siala & Wang, 2022)

Equally important is the protection of data privacy and security. Strong safeguards are needed to protect
sensitive health information, along with clear protocols for data ownership, access rights, and informed
consent. Patients must be able to trust that their data is handled responsibly and transparently (Ahmed et al.,
2025; Siala & Wang, 2022).

Validation and accountability go hand in hand. Before clinical deployment, Al models should undergo
rigorous external validation to test their performance in independent, real-world settings. In parallel,
mechanisms must be in place to assign responsibility in cases of algorithmic error or unintended harm (Cai et
al., 2024; Siala & Wang, 2022).

Inclusive stakeholder engagement strengthens every phase of implementation. Involving patients,
clinicians, and community representatives in the design, deployment, and evaluation of Al tools ensures that
the systems reflect real clinical needs and social contexts. Clinician training and user support are also crucial
to ensure effective uptake (Goktas & Grzybowski, 2025; Siala & Wang, 2022).
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Robust and adaptive regulatory oversight will be essential. Regulatory frameworks must evolve in step
with technological progress and should include measurable standards, real-time monitoring protocols, and
pathways for corrective action when safety or efficacy is compromised (Goktas & Grzybowski, 2025; Siala &
Wang, 2022).

Additional strategies support long-term impact. Human-centered design helps maintain patient
autonomy and supports trust in Al-driven care (Siala & Wang, 2022). Global partnerships and sustainable
development principles can promote broader access and scalability (Goktas & Grzybowski, 2025; Siala &
Wang, 2022). And continuous monitoring ensures that Al systems remain responsive to new data, risks, and
use cases over time (Goktas & Grzybowski, 2025).

Ultimately, responsible Al deployment in cardiovascular prevention depends on a foundation of
transparency, fairness, and public accountability. These principles are not only ethical imperatives—they are
practical necessities for building trust, ensuring effectiveness, and maximizing the social value of Al in healthcare.

7. Future Directions

As artificial intelligence continues to expand its role in preventive cardiology, several emerging
directions offer the potential to significantly reshape risk prediction, monitoring, and personalized care for
coronary artery disease (CAD). Among them, the integration of genetic data—particularly polygenic risk
scores (PRS)—into Al-based models represents a promising yet nuanced area of development.

Al systems incorporating PRS and other genomic features have shown modest but consistent gains in
predictive accuracy compared to traditional clinical models. These models are capable of processing complex
genetic information and identifying patterns of risk that may not be apparent through standard statistical
approaches (Khanna et al., 2023; Koyama et al., 2020; Singh et al., 2024). Meta-analyses indicate that the
addition of PRS to clinical variables can improve discrimination metrics such as the C-index by approximately
1.5-1.6%, although the absolute gains are often limited (Agbaedeng et al., 2021; Rincon et al., 2023; Yun et
al., 2022). The added value appears to be most notable in refining risk stratification for specific subgroups,
particularly younger individuals or those with intermediate clinical risk (Rincon et al., 2023; Yun et al., 2022).

Despite its theoretical appeal, the clinical utility of Al-enhanced genetic modeling remains constrained
by methodological heterogeneity, limited population diversity in genetic datasets, and the absence of
standardized integration protocols. As such, the near-term impact may be confined to select applications, rather
than broad-scale implementation.

In parallel with advances in genomics, the integration of physiological data from wearable devices
represents another frontier in Al-driven CAD prevention. Smartwatches, fitness bands, and mobile ECG
monitors now routinely collect real-time information such as heart rate, physical activity, sleep patterns, and
even single-lead ECG signals. When analyzed using machine learning or deep learning algorithms, these data
streams offer the potential to support early detection and continuous monitoring of cardiovascular risk.

Although most Al models for CAD risk prediction have historically relied on clinical, laboratory, and
imaging data, recent studies have begun to explore the predictive value of wearable-derived metrics.
Parameters such as heart rate variability, resting heart rate trends, and wearable ECG signals have shown
promise, particularly when combined with demographic or electronic health record data(Alizadehsani et al.,
2021; Garavand et al., 2023). Deep neural networks have demonstrated high accuracy in detecting related
cardiovascular conditions, such as atrial fibrillation and hypertension, with area under the ROC curve
(AUROQC) values reaching up to 0.98 in some cases (Lee et al., 2022). While direct application to long-term
CAD risk prediction is still emerging, the feasibility of this approach is supported by improving sensor fidelity
and growing longitudinal datasets.

Notably, Al models trained on wearable data may still underperform compared to those built on in-
hospital monitoring systems, primarily due to noise, data gaps, and variability in user adherence (Alizadehsani
et al., 2021; Lee et al., 2022). However, the performance gap is narrowing as wearable technology matures
and signal processing techniques evolve.

As wearable devices become more ubiquitous and data quality improves, their integration into Al
pipelines for preventive cardiology may enable a shift toward proactive, decentralized, and highly personalized
cardiovascular care.

Further innovations such as federated learning for privacy-preserving model training, and adaptive Al
interventions tailored to real-time patient feedback, may also shape the next generation of prevention tools.

As the technological foundation for Al in CAD prevention continues to mature, there is growing
consensus that innovation alone will not be sufficient. The long-term success of Al tools depends equally on
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the development of structured implementation frameworks that address not only technical performance, but
also ethical, practical, and systemic concerns. Emerging policy recommendations consistently highlight the
importance of transparency, fairness, and accountability throughout the Al lifecycle (Goktas & Grzybowski,
2025; Jacob et al., 2025).

To ensure safe and effective deployment, future systems will need to incorporate mechanisms for
external validation, stakeholder engagement, and real-world performance monitoring. This includes rigorous
testing across diverse populations, integration into clinical workflows, and adequate training for end users (Cai
et al., 2024; Gama et al., 2022; Jacob et al., 2025). Moreover, the importance of including patients, clinicians,
and policymakers in the design and evaluation process cannot be overstated; these perspectives are essential
for building trust and ensuring clinical relevance (Goktas & Grzybowski, 2025; Jacob et al., 2025).

Ultimately, the next generation of Al-based preventive tools for CAD will be judged not only by their
predictive accuracy, but by their ability to operate transparently, equitably, and responsibly within complex
healthcare systems. Continued research, policy innovation, and interdisciplinary collaboration will be critical
to realizing this potential at scale.

Conclusions

Artificial intelligence is steadily transforming the paradigm of coronary artery disease (CAD)
prevention. By enabling earlier risk identification, more accurate stratification, and the design of personalized
interventions, Al-based models have begun to exceed the capabilities of conventional risk prediction tools. In
particular, the use of diverse data sources—ranging from electrocardiograms and imaging to electronic health
records—has made it possible to generate more nuanced and individualized risk assessments.

Nonetheless, important barriers remain before these tools can be widely and responsibly implemented.
Persistent issues such as algorithmic bias, insufficient external validation, and the opaque nature of many
models continue to limit their integration into routine care. Broader concerns also persist around health equity,
data governance, and the absence of comprehensive regulatory structures.

Addressing these challenges will require multi-level collaboration across technical, clinical, ethical, and
policy domains. Transparent, explainable systems must be developed and rigorously evaluated across varied
populations. Fairness and accountability should be embedded into the design process from the outset, and
mechanisms for independent oversight must be strengthened. Equally vital is the active involvement of
patients, practitioners, and public stakeholders in shaping how these tools are used.

In the end, the transformative potential of Al in preventive cardiology depends not only on its analytic
accuracy, but on its capacity to promote more just, inclusive, and patient-aligned models of care. Realizing
that potential will hinge on our collective ability to balance innovation with integrity and equity.
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