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ABSTRACT 

Introduction: Affective disorders are serious, long-lasting, and often relapsing conditions that strike an 
individual unpredictably. The ideal psychiatric monitoring mechanism would predict coming episodes before their full-
blown clinical symptoms develop. This would be a tremendous advance and may be possible using our current 
understanding of the nature of affective disorders, portable device-based data collection capabilities, and remote data 
analysis. There are numerous reviews of the literature that cover the symptom recognition of affective disorders using 
mobile devices, but there are no reviews on the actual prediction of affective episodes. This review aims to cover that gap. 
Methods: A systematic review of five databases (2016-2025) was conducted and included 10 observational studies, mostly 
designed as prospective cohorts, that concentrated on the prognosis of affective disorders and utilized wearable devices. The 
variables under study were circadian parameters, sleep metrics, amounts and intensity of physical activity, and light exposure. 
Although the methodological diversity among the studies made direct comparisons problematic, the studies allowed for 
the identification of certain findings that appear promising for predicting the occurrence of affective episodes. 
Results: The review encompassed 10 observational studies (1416 subjects). Our synthesis showed that it is possible, even 
feasible, to predict affective episodes using mathematical models. These models assess the types of 
characteristic disturbances that individuals with affective disorders have in their circadian rhythms. When we applied 
some standard methods for doing this kind of analysis (Accuracy Metrics and AUC Values), the results gave us AUC 
values that ranged from about 0.67 to 0.98, depending on several factors.  
Conclusions: Predicting affective episodes is possible using wearable technology or smartphone app, which can detect 
disturbances in a person's circadian rhythm. Currently, the best methods for doing this merit a look because they could indeed 
allow for early intervention before the onset of manic or depressive symptoms. 
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Introduction. 
Purpose of The Systematic Review  
The subject of the present paper is a literature review regarding the application of wearable devices 

among patients with affective disorders. Traditional psychiatric methods such as questionnaires, clinical 
interviews, and observational assessments have limitations in diagnostic capabilities and treatment monitoring. 
Currently, most psychiatric patients do not require inpatient care; their treatment primarily involves outpatient 
counseling. This shift is largely due to the development of effective medications with relatively mild side 
effects. Outpatients are generally capable of societal functioning; however, difficulties arise during episodes 
of exacerbation or treatment non-adherence. Under these conditions, patients may experience impaired 
judgment regarding their health status, confusion, and a lack of awareness about the necessity to seek specialist 
advice for treatment modification or initiation. 

The increasing prevalence of mental health conditions has exacerbated challenges related to healthcare 
accessibility. (Wu, Y., 2024) A potential solution to these issues lies in leveraging rapidly advancing 
technologies, which have become increasingly affordable to individuals of average income. (Lyu et al., 2024) 
The intersection of psychiatry and technology has led to extensive research on wearable devices. By registering 
specific physiological parameters and employing advanced mathematical models, these devices indirectly 
provide data predominantly on autonomic nervous system functioning, serving as indicators of self-regulation 
and stress experienced by patients. (Song et al., 2024) 

Continuous monitoring facilitates the assessment of functional impairment, even when patients may not 
fully recognize subtle yet critical changes potentially indicative of an impending disease episode or 
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exaggerating missing treatment. (Averous, Charbonnier & Dany, 2020) Thus, modern devices—including 
smartwatches, monitoring bands, and mobile phone applications—can be valuable sources of information for 
clinicians and patients alike. Current research directions are increasingly focused on biological markers 
including circadian cycles, sleep patterns, activity patterns, speech patterns, social acitivity changes, heart rate 
changes, light exposition , temperaturę and galvanic skin response. 

These emerging technologies function both by automatically recording objective physiological data and 
by streamlining the collection, processing, and communication of subjective self-reported data requested from 
the user, thereby providing a contemporary form of questionnaire assessment. Gathering subjective 
information through the ecological momentary assessment (EMA) model allows for considering the influence 
of environmental factors, which can be sources of confounding data. Proper and adequate reactions to life 
events, without taking subjective information into account, may resemble changes in an individual's 
homeostasis that mimic changes accompanying disease episodes. (Dunster, Swendsen & Merikangas, 2021) 

However, beyond scientifically validated efficacy and affordability, successful implementation of these 
technologies also depends significantly on meeting users’ expectations regarding convenience, ease of use, 
and resistance to interference from everyday activities, as well as encouraging user engagement, particularly 
for self-report measures. (Van Til, Youngstrom & Allen, 2019)  

 
Overview of Circadian Rhythms, Mood Regulation, and Affective Disorders 
Our internal biological clocks, or circadian rhythms, are intimately linked to mental health, and it’s becoming 

clearer by the day just how much this is the case. These near-24-hour cycles—nearly as long as the Earth takes to 
spin once on its axis—govern essential patterns of biology and behavior. They make us do things with all the 
precision an orchestra conductor could muster, and they seem to follow some kind of score that was written a long 
time ago in some predawn stage of evolutionary history (McCarthy et al., 2022; Takaesu, 2018). 

 
Circadian Dysregulation and Mood Disorders 
A multitude of studies connects circadian disruptions to the onset, severity, and recurrence of mood 

disorders like major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD) 
(Lanfumey et al., 2013; McClung, 2013; Takaesu, 2018). Individuals affected by these disorders frequently 
exhibit disturbed sleep, altered melatonin and cortisol patterns, and shifts in mood that consistently align with 
the circadian clock (Lanfumey et al., 2013; Wirz-Justice & Benedetti, 2019). In bipolar disorder, for instance, 
sleep–wake irregularities are evident across manic, depressive, and even euthymic states, suggesting that 
circadian dysfunction is a core mood disorder feature rather than a mere byproduct of episode presentation (Ng 
et al., 2015; Armitage, 2007). Manic patients show a reduced need for sleep, increased REM efficiency, and 
exhibit a number of other unique neurophysiological sleep markers. In contrast, depressive episodes are more 
likely to be accompanied by insomnia, hypersomnia, or significant circadian phase shifts (Hudson et al., 1988; 
Takaesu, 2018). 

In addition, even in the euthymic phases of BD, trait-like circadian disruptions persist, which are evident 
in the form of lower overall melatonin levels and a delayed sleep-wake pattern compared to healthy controls 
(Bradley et al., 2017; Nurnberger et al., 2000; Robillard et al., 2013; Takaesu et al., 2016). 

Yet, rhythm instability is not merely a consequence of living with BD. A genetic susceptibility may 
underlie or partially explain why some individuals with BD have such unstable rhythms. This is particularly 
true for key clock genes like CLOCK, ARNTL, PER1, and CRY2 (also called CRY). Single-nucleotide 
polymorphisms in CLOCK have been tied to a propensity to relapse in mood episodes and to shifts in one's 
chronotype (Benedetti et al., 2003; Lee et al., 2010). 

 
Environmental and Lifestyle Stressors 
Environmental stressors also significantly influence circadian stability. Life events that are stressful, which 

often precede mood episodes in BD, can disrupt social zeitgebers and consequently destabilize internal rhythms 
(Malkoff-Schwartz et al., 1998). Irregular social routines, as captured by the Social Rhythm Metric, are more 
common in BD patients even during euthymic phases—and can predict both the first onset and recurrence of mood 
episodes (Shen, Alloy, Abramson & Sylvia, 2008). 

Today’s modern lifestyle—characterized by artificial lighting, shift work, and irregular sleep—threatens the 
very backbone of circadian health (Dobrovinskaya, Alamilla, & Olivas-Aguirre, 2024). For instance, night-shift 
work ups the odds of depression and anxiety by about 40% over the rates seen in day workers (Lee et al., 2017). 
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Some studies suggest that evening light exposure may fool the brain into thinking it’s daytime, leading to the wired-
but-tired feeling and reduced mood that some experience when trying to sleep (Dobrovinskaya et al., 2024). 

 
Underlying Biological Mechanisms 
Despite the complexity of circadian disruptions, researchers have begun to elucidate several pathways 

through which these rhythms intersect with mood regulation including: melatonin and the sleep–wake cycle, 
neurotransmitter regulation, hypothalamic–pituitary–adrenal (HPA) axis and stress response, neurogenesis and 
neuroplasticity, immune function and inflammation, energy metabolism and brain connectivity. 

Melatonin, secreted by the pineal gland under circadian control, signals the onset of night and helps 
promote sleep. In many mood disorders, melatonin secretion is abnormally timed, reduced in amplitude, or 
overly responsive to light suppression (Lewy, Wehr, Goodwin, Newsome & Rosenthal, 1981, Lewy, Sack, 
Miller & Hoban 1987; Lanfumey et al., 2013). These aberrations likely contribute to sleep disturbances and, 
in turn, intensify mood instability (Takaesu, 2018; Wirz-Justice & Benedetti, 2019). 

Clock genes and the suprachiasmatic nucleus (SCN) orchestrate rhythmic fluctuations in key 
neurotransmitters such as serotonin, dopamine, and norepinephrine (McClung, 2013). When circadian control 
falters, these chemical messengers can fall out of sync, promoting either hyperactivation (as in mania) or 
hypoactivation (as in depression). Notably, mice with CLOCK gene mutations display mania-like behaviors 
tied to altered dopamine signaling (McClung, 2013), underscoring the gene’s pivotal role in mood regulation. 

The HPA axis normally follows a robust daily rhythm in cortisol secretion, peaking in the morning and 
tapering by evening. In mood disorders, however, this rhythm can become blunted or reversed, and the axis 
itself often shows hyperactivity (Havermans, Nicolson, Berkhof & deVries 2010; Lanfumey et al., 2013; 
McClung, 2013). Disruptions in clock genes can amplify cortisol dysregulation, diminishing stress resilience 
and perpetuating a vicious cycle of circadian and mood dysfunction (Takaesu, 2018). 

Sleep—particularly slow-wave sleep and REM sleep—contributes significantly to synaptic 
homeostasis, neuronal repair, and adult hippocampal neurogenesis (Armitage, 2007; McClung, 2013). 
Chronically disrupted sleep and circadian misalignment can hinder these neuroplastic processes, potentially 
accelerating neurodegenerative changes linked to persistent mood symptoms (Armitage & Hoffmann, 2001; 
Lanfumey et al., 2013). Encouragingly, interventions that help reset the biological clock, such as light therapy 
or carefully timed pharmacological treatments, appear to support neurogenesis, offering a mechanistic 
rationale for their mood-stabilizing effects (Wirz-Justice & Benedetti, 2019). 

The immune system and circadian clock engage in ongoing cross-talk, where inflammatory signals can 
disrupt clock gene expression, and clock genes, in turn, regulate immune responses (McClung, 2013; Wirz-
Justice & Benedetti, 2019). Pro-inflammatory states are frequently observed in individuals with MDD or BD, 
and circadian misalignment can intensify this immune dysregulation, possibly exacerbating mood symptoms 
(McClung, 2013; Wirz-Justice & Benedetti, 2019). 

Cellular energy balance, governed by mitochondrial function, also follows a diurnal pattern under 
circadian regulation (McClung, 2013). Deficits in mitochondrial efficiency—potentially worsened by 
circadian disruptions—have been implicated in BD (McClung, 2013). Meanwhile, daily rhythms in brain 
network connectivity can shift when the clock malfunctions, altering how different regions of the brain interact 
and compounding the neurobiological basis of mood disorders (Dollish, Tsyglakova & McClung, 2024; Wirz-
Justice & Benedetti, 2019). 

 
Underlying Biological Mechanisms 
Even though circadian disruptions are quite complex, investigators have begun to clear up a number of 

pathways that connect these rhythms with mood regulation. Among the pathways are: 
• Melatonin and the sleep–wake cycle, 
• Neurotransmitter regulation, 
• The HPA axis and the stress response, 
• Neurogenesis and neuroplasticity, 
• Immune function and inflammation, 
• Energy metabolism, 
• Brain connectivity. 
Melatonin, released by the pineal gland under circadian control, signals that night has come and assists 

in inducing sleep. In many affective disorders, melatonin secretion has been found to be timed abnormally, to 
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be reduced and/or not to be robust, or to be overly responsive to light suppression (Lewy et al., 1981, 1987; 
Lanfumey et al., 2013). We suspect that such secretion abnormalities are tied in some necessary way to sleep 
disturbances, which then contribute to intensified affective instability. 

Key neurotransmitters like serotonin, dopamine, and norepinephrine fluctuate rhythmically under the 
influence of clock genes and the SCN (McClung, 2013). When circadian control weakens, these chemical 
signals can become desynchronized, pushing the system either into a state of hyperactivation (as in mania) or 
a state of hypoactivation (as in depression). Notably, chemical messenger dysregulation is also what happens 
in mice with mutations in the CLOCK gene—all of which suggests a central role for that gene in both circadian 
timing and mood. 

The HPA axis has a robust daily rhythm of cortisol secretion. In people with mood disorders, that rhythm 
becomes blunted or reversed. There is also evidence that the HPA axis shows hyperactivity in mood disorders 
(Havermans et al., 2010; Lanfumey et al., 2013; McClung, 2013). Disrupting clock genes can amplify HPA 
dysregulation and the bad stress resilience that comes with it. HPA dysregulation also perpetuates a downward 
mood spiral for people who are susceptible (Takaesu, 2018). 

The contribution of sleep, especially slow-wave and REM sleep, to synaptic homeostasis, neuronal 
repair, and adult neurogenesis is substantial (Armitage, 2007; McClung, 2013). If processes integral to sleep's 
restorative function are disrupted, as can happen when the circadian clock is misaligned or sleep is fragmented, 
neuroplasticity can take a hit. Fast-forwarding fragmented circadian signals can hinder the messy processes 
required for the formation of new circuits in the hippocampus and elsewhere (Lanfumey et al., 2013). 

The cross-talk between the immune system and the circadian clock is a dialogue that is ever ongoing. 
Inflammatory signals can and do disrupt the normal expression profile of clock genes. In turn, certain clock 
genes have been found to regulate various aspects of the immune response (McClung, 2013; Wirz-Justice & 
Benedetti, 2019). 

 
Methodology 
Study Design 
Eligibility Criteria 
The selection of studies for this systematic review was guided by specific criteria designed to focus on 

the prediction of affective episodes through digital monitoring technologies. The selection of studies for this 
systematic review was guided by specific criteria designed to focus on the prediction of affective episodes 
through digital monitoring technologies. Studies were eligible for inclusion if they involved at least one cohort 
of participants diagnosed with MDD or BD according to established DSM or ICD diagnostic criteria. All 
participants were required to be adults, ensuring homogeneity in the developmental stage of the studied 
population. We specifically sought original research that utilized wearable technology (such as activity trackers 
or smartwatches) or smartphone applications to collect data related to circadian rhythms. Studies needed to 
incorporate circadian rhythm parameters—including sleep metrics, activity patterns, heart rate variability, or 
light exposure—as predictive factors for future mood states or episodes. Our review focused on English 
language publications from 2016 to 2025, capturing recent technological advances in digital phenotyping. 

Studies were excluded if they merely recognized current affective symptoms rather than predicting 
future episodes, as prediction capability was the central focus of our review. We excluded systematic reviews, 
meta-analyses, and case-control studies that examined differences between groups without incorporating 
predictive modeling. Publications that focused solely on technical aspects of measuring devices without 
reporting clinical outcomes were deemed ineligible. Additionally, we excluded studies lacking clear 
methodology for prediction or forecasting, non-peer-reviewed publications, and research examining disorders 
other than MDD or BD as primary conditions. 

This review specifically targeted studies that developed predictive models or algorithms to forecast the 
occurrence of affective episodes before their clinical onset, rather than those merely identifying concurrent 
symptoms during measurement. This distinction was crucial to evaluate the potential of digital technologies 
for early intervention in mood disorders. 
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Fig. 1. Study selection Flowchart 
 
Data Collection 
Search Strategy and Selection Process 
Databases searched included PubMed, Google Scholar, PsycINFO, Web of Science, and IEEE Xplore, 

using keywords and Medical Subject Headings (MeSH) terms such as "wearable devices," "affective 
disorders," "mood disorders", "depression," "bipolar disorder," "mental health monitoring", "forecast of mental 
disorders", "prediction of mental disorders". 

The selection of studies was performed by all study authors with division of databases and search 
criteria. The final decision in case of dispute regarding study qualification belonged to the first author. The 
initial selection was conducted through analysis of the study title, excluding diseases other than depression and 
bipolar affective disorder. 

Subsequently, abstracts were analyzed for depression and bipolar affective disorder criteria. Studies 
mentioning the use of wearable devices or smartphones in the abstract were included in the next stage. When 
determination of the used method was impossible, full study texts were reviewed. In cases of doubt about 
diagnosis criteria, output data were analyzed if studies contained information about registration in the 
clinicaltrials.com system and indicated the study number. 

Next, found systematic reviews were analyzed to identify any omitted studies. Subsequently, systematic 
reviews were excluded from further analysis. Papers exclusively focusing on technical aspects such as 
construction and operation of measuring devices or methods of data analysis and research algorithms were 
excluded unless they contained clear results enabling prediction. The last, but very important stage of analysis 
involved excluding studies that frequently used the term 'prediction' but in reality only concerned on the 
recognition of affective disorder symptoms that appeared during measurement. 
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Table 1. Original research by study’s design 
 

Study Year Design 

Grierson et al. 2016 Cross-sectional with prospective elements 

Carr et al. 2018 Case-control observational 

Cho et al. 2019 Prospective observational cohort 

Kumagai et al. 2019 Prospective cohort 

Busk et al. 2020 Forecasting study 

Esaki et al. 2021 Prospective cohort 

Braund et al. 2022 Longitudinal observational 

Lee et al. 2023 Prospective cohort 

Kim et al. 2024 Prospective cohort with deep learning 

Lim et al. 2024 Prospective cohort 
 
Data Collection Process 
Data extraction was performed by two independent reviewers using a standardized form without tools 

or pilot-testing, because the final amount of the eligible studies were small. Discrepancies were resolved 
through discussion and consensus. For each eligible study, the following data were extracted which may be 
divided into 5 categories. 

 
Table 2. Types of Data Collected 

 

Study 
characteristics 

• Authors and publication year 
• Study design (e.g., prospective cohort, randomized controlled trial) 
• Sample size and participant demographics 
• Duration of observation period 
• Clinical diagnosis of participants (MDD, BD I, BD II) 

Wearable 
technology 
and data 
collection 
methods 

• Types of wearable devices used (e.g., Fitbit Charge HR, ActiCal, Proteus patch) 
• Smartphone applications (e.g., eMoodChart, Mood Zoom) 
• Sensors utilized (accelerometers, light sensors, heart rate monitors) 
• Self-report instruments and clinical scales (e.g., HDRS, MADRS, YMRS) 
• Data collection frequency and adherence rates 

Circadian 
rhythm 
assessment 
parameters 

• Parametric measures (MESOR, amplitude, acrophase, Circadian Quotient) 
• Non-parametric measures (Interdaily Stability, Intradaily Variability, Relative Amplitude) 
• Sleep parameters (onset, duration, quality, L5, M10) 
• Activity patterns (steps, movement, GPS data) 
• Heart rate parameters (mean, variability, circadian rhythm) 
• Light exposure data 
• Self-reported mood and energy data 

Analytical 
approaches 

• Mathematical modeling techniques (cosinor analysis, non-parametric circadian rhythm analysis) 
• Machine learning and deep learning algorithms used (Random Forest, XGBoost, LSTM, GRU) 
• Feature selection methods 
• Time window for prediction (next-day, 3-day, 7-day forecasts) 
• Use of personalized versus general models 
• Statistical methods for analysis 

Outcome 
measures 

• Performance metrics (accuracy, sensitivity, specificity, AUC) 
• Correlation coefficients between circadian parameters and clinical outcomes 
• Hazard ratios for mood episode relapses 
• Differentiation between diagnostic groups 
• Most significant predictive features 
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Study Risk of Bias Assessment 
The Newcastle-Ottawa Scale (NOS) was used to assess bias of all included studies. For each study, the 

following domains were assessed: risk of selection bias, risk of information/ measurement bias, risk of 
attribution bias, risk of reporting bias, risk of confounding, Applicability concerns. Each domain was rated as 
"Low," "Moderate," or "High" risk of bias. The overall risk of bias was determined based on the individual 
domain assessments. Study performed by Braund et al. (2022) and Esaki et al. (2021) was included despite of 
high bias risk, because the studies’ limitations were abundantly described in review. 

 
Table 3. Reviewed Studies Risk of Bias 

 
Study Year Bias higer or equal to overall Overall Risk of 

Bias 

Grierson et al. 2016 

Selection bias (Low-Moderate): unperfect 
representation of target population mostly young 
people (13-25 years) with first-episode mood 
disorders; Attrition bias: (Low-Moderate) missing 
physiological data was addressed adequately in 
statistical analysis 

Low-Moderate 

Carr et al. 2018 

Selection bias (Moderate): small sample, well-
characterized clinical groups; Attrition bias 
(Moderate): data loss addressed but still a significant 
limitation 

Low-Moderate 

Cho et al. 2019 Information/Attrition bias (Moderate): missing data 
handling eg. 43.9% sleep-related, 29.6% heart rate Low-Moderate 

Kumagai et al. 2019 

Attrition bias (Moderate): 10% dropout rate; 
Measurement Bias (Low-Moderate): clinical scale 
PHQ-9 was administered too far (one per in month); 
Confounding (Low-Moderate): treatment changes 
during the study period were not restricted or fully 
accounted for in the analysis; Information Bias 
(Low-Moderate): missing data was handled through 
multiple imputation 

Low-Moderate 

Busk et al. 2020 Attrition Bias (Low-Moderate): study did not 
extensively discuss dropout rates Low 

Esaki et al. 2021 

Information Bias (High): 7-day measurement period 
for circadian activity rhythms was a predetermined 
data collection period without testing different 
measurement durations; Attrition Bias (High): the 
loss of nearly 13% of participants; the assessment of 
circadian rhythm for only 7 days at baseline does not 
capture changes over the 12-month follow-up period; 
Confounding (High): the 24-hour baseline 
assessment period for circadian rhythm is extremely 
limited, the naturalistic study design meant that 
therapy during follow-up was not controlled 

High 

Braund et al. 2022 

Information bias (High): reliance solely on GPS data 
for circadian rhythm; Attrition bias (High): GPS data 
completeness and handling of missing data not fully 
described; Confounding (High): 24-hour assessment 
period for baseline circadian rhythm is very limited 

High 

Lee et al. 2023 Low in all category Low 

Kim et al. 2024 Low in all category Low 

Lim et al. 2024 
Confounding bias (Low-Moderate): the naturalistic 
observational design means that medication effects 
could not be fully controlled 

Low 
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Effect Measures 
The studies examining the relationship between circadian rhythm disruptions and mood disorders 

employed various effect measures to quantify their findings, reflecting the diversity of study designs and 
analytical approaches.  

 
Table 4. Reviewed Studies Types of Effect Measures 

 
Types of effect measures used Results  Study  
Hazard Ratios (HR) 1.109 Esaki et al. (2021) 
Accuracy Metrics and AUC Values AUC ~0.67 up to ~0.98 Cho et al. (2019), Kim et al. (2024), Lee 

et al. (2023), and Lim et al. (2024) 
Correlation Coefficients r= 0.703; r =-0,4 to +0,28 or 

insignificant 
Carr et al. (2018), Grierson et al. (2016), 
and Braund et al. (2022) 

Forecast Metrics, Regression Models 
(R², RMSE, Panel VAR) 

R² (≈0.51) and RMSE (≈0.32); 
PVAR = 0.191- 0.271 

Busk et al. (2022), Kumagai et al. 
(2019) 

 
Assessment of Overall Bias and Uncertainty 
GRADE-like qualitative summary was used, beacuse of small sample of studies, which used various 

designs. Giving to primarly narrative charakter of this systematic review, a qualitative approach was chosen 
and this review focuses on describing risk of bias, inconsistency, indirectness, imprecision, and publication 
bias narratively, rather than producing formal numeric GRADE scores. 

 
Table 5. GRADE-Like Summary 

 
Domain Considerations Across the 10 Studies Overall Assessment 

Risk of Bias 

Ø Several observational and machine-learning studies (e.g., 
Carr 2018, Grierson 2016, Kumagai 2019) did not randomize or 
blind outcomes, thus prone to confounding and selection bias. 
Ø In Busk (2020) and Cho (2019), potential bias arises if data 
are incomplete or self-reported (mood tracking). 
Ø Esaki (2021) selected a 7-day measurement period without 
empirical justification, yet attempted to predict outcomes over 
12 months. 
Ø Lee/Cho (2023) and Lim (2024) employed more rigorous 
data collection and sophisticated modeling approaches. 
Ø Four studies (Cho 2019, Lee 2023, Lim 2024, Kim 2024) 
are based on the same Mood Disorder Cohort Research 
Consortium (MDCRC) database, limiting the independence of 
evidence sources. 

Moderate to High 
(non-RCT designs, 
possible selective 
reporting, reliance on 
self-tracking) 

Inconsistency 

Ø Studies measured circadian or mood outcomes in varied 
ways (e.g., activity trackers, daily smartphone reports, or 
clinical scales). 
Ø Diverse analytical approaches produced metrics that aren't 
directly comparable (machine learning classifications, vector 
autoregressive models, Cox models). 
Ø While circadian disruption consistently correlates with 
mood symptoms, specific parameters of importance show 
marked variation. 

Moderate 
(heterogeneity of study 
designs and outcome 
metrics) 
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Indirectness 

Ø Some studies focus on short‐term predictions (within 
days), others on long‐term relapse risks (weeks). 
Ø Certain studies (e.g., Kim 2024, Lim 2024) highlight 
purely digital data for classification, which may not fully 
capture clinical endpoints. 
Ø Most studies use specialized populations (e.g., adults 18–
35, or specific BD subtypes), so generalizability might be 
limited. 

Moderate 
(narrow study 
populations, proxy or 
digital outcomes in 
some cases) 

Imprecision 

Ø Sample sizes vary; some (Kumagai 2019, Grierson 2016) 
have fewer participants, leading to large confidence intervals or 
no reported intervals at all. 
Ø Machine-learning metrics (e.g., accuracy or AUC) lack 
confidence intervals in some articles, complicating precision 
estimates. 
Ø For time-to-event data (Esaki 2021), the effect estimates 
can be narrow but population was still relatively small. 

High 
(limited sample sizes & 
sometimes wide or 
unstated CIs) 

Publication Bias 

Ø Only one prospective time-to-event study (Esaki 2021) 
examines mood relapse; many studies with negative or null 
findings may remain unpublished. 
Ø Funnel plots or Egger’s tests are not feasible due to <10 
studies per quantitative outcome. 
Ø Overall, we cannot exclude publication bias, especially for 
digital phenotyping approaches that might be prone to “positive 
result” reporting. 

Uncertain 
(few studies, no formal 
funnel plot possible) 

Overall Certainty of 
Evidence 

Ø Across these ten articles, we find consistent signals that 
circadian disruption is associated with mood dysregulation or 
relapse, but the methods diverge significantly, and sample sizes 
often remain small. 
Ø Risk of bias and imprecision are notable; no formal meta-
analysis is feasible to unify effect estimates. 

Actually low with 
optimistic prognosis  

 
Results  
Prediction of Occurrence of Affective Episodes Within Few Days 
The investigation by Cho et al. (2019) had the particularity of a very lengthy observation period of 2 

years. The sample comprised 55 subjects with mood disorders—18 with MDD, 18 with BD type I, and 19 with 
BD type II. The apparatus used consisted of either a Fitbit Charge HR or a Charge 2, a smartphone application 
(eMoodchart), and light sensors in the smartphones. They then employed machine learning algorithms to make 
sense of the data they had collected. 

The accuracy achieved by same‑day episode classifier was striking: no episode (NE) at 85.3%, 
depressive episode (DE) at 87%, manic episode (ME) at 94%, and hypomanic episode (HME) at 91.2%. 
However, the corresponding sensitivity values were rather low. NE had a sensitivity value of 93%, but DE had 
only 48%, ME had only 25.2% and HME had only 30.6%. Thus, Cho et al. (2019) obtained very good accuracy 
primarily, because they had a huge predominance of non-episode days mixed in with their overall study time. 
They also had good specificity. But from a clinical point of view, the low sensitivity may a problem. It would 
be very hard to use these predictions in a clinical manner when the system had this kind of sensitivity profile. 
But what is more important from the point of this review, the researchers also tried to predict mood state from 
1 to 3 days in advance. The strength of these mood predictions was below the threshold for clinical significance 
and they did have AUCs ranging between 0.67-0.7. 

Cho et al. (2019) undertook an analysis considering several influential factors related to mood prediction 
across various patient categories and mood episode types. They took data from various sources—light exposure, 
steps, sleep, and heart rate—and transformed it into specific indexes and factors. They then used machine 
learning to perform the analysis and assigned weights to the factors, indicating relative importance in 
predicting the kinds of mood states that can be experienced by different kinds of people.  

In general, light exposure during bedtime consistently mattered across most groups, particularly in all 
patients, MDD patients, BD I patients, and BD II patients with hypomanic episodes. Increasing light exposure 
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during bedtime positively correlated with mood instability. This suggests that disturbances in the circadian 
rhythm due to inappropriate light exposure may significantly impact the mood. 

Steps taken during bedtime was another critical index across all patients that also correlated with mood 
instability. Showing a strong positive correlation with the mood index, this suggests that being active during 
times when one is supposed to be resting is not a good idea for one's mood. 

Heart rate circadian rhythm mesor was particularly influential in all patients, BD I patients, and BD II 
patients. Mensor could be describe as the mid‑line around which the heart‑rate curve oscillates. Patients who 
had a higher mesor were typically more unstable and were more likely to have mood episodes. 

The most important indexes slightly differed for specific groups. For MDD patients, the most important 
factors were increased Steps During Bedtime and Light Exposure During Bedtime. Conversely, for BD II 
Patients, the most influential index was Heart Rate Circadian Rhythm Amplitude, indicating a strong 
association between heart rate variability and mood states. Additionally, Sleep Quality was positively 
correlated with mood stability, which was somewhat distinct from other categories. Among less important 
indexes, Heart Rate Circadian Rhythm Goodness of Fit and Sleep Length were generally less important across 
all patient groups, with a small exception for BD II patients in the prediction of mood episodes. 

A subsequent study performed by Lee et al. (2023) under the direction of the Cho’s team that did the 
earlier work, included a markedly larger number of participants: 495 patients with affective disorders who 
were followed for a mean observation period of 280 days. Similar devices were used in the study: the Fitbit 
Charge HR, Charge 2, and Charge 3 along with the eMoodChart application to track participant data. When 
the researchers compared data collected through the eMoodChart to the Fitbit devices, they reported impressive 
sensitivity values of 89.8-92.8% and a nice accuracy of 90.1-93.0% three days ahead. 

The superior statistical performance of Lee's study compared to Cho's research is attributable to several 
factors, such as its substantially larger sample size (495 patients versus 55 patients) and different 
methodological approaches to data collection and analysis. While both studies began recruitment in March 
2015, Lee's continued until 2019, whereas Cho's ended in 2017, allowing Lee's study to achieve a longer 
average follow-up duration per participant. Lee's study appears to have achieved more consistent data 
collection, with a much higher proportion of their collected data being suitable for comprehensive analysis. 
Additionally, Lee et al. (2023) implemented binary classification for each episode category - separately for 
depression, mania, and hypomania - instead of the multiclass classification (NE, DE, ME, HME) used by Cho 
et al. Interestingly, Cho's study explicitly tested and compared personalized models against general models, 
finding improved efficiency by approximately 25%, whereas Lee's study didn't indicate any type of 
personalization. 

Lee et al. (2023) used 30 features, whereas Cho et al. (2019) used 14 features in their research. Lee et 
al.'s work didn't create additional features but instead built upon earlier research to make better optimizations. 
They did this by using ShapRFECV, a modern statistical method, for more efficient and effective analysis of 
the features. Lee et al. (2023) rather extraordinarily specified various forms of "step counts" even within 
various defined parts of the day, even while they themselves had specific definitions of "morning," "afternoon," 
and "evening." They used forms of these parts of the day in their comparisons; thus, allowing comparisons and 
analyses of form, duration, and part of the day in much more detail than Cho et al. (2019) could. Using much 
more precise definitions and forms of the day and by making much more use of statistical definitions and forms 
of the day, Lee et al. (2023) provided comparisons that are much tighter and more coherent across the specifics 
of the parts of the day than Cho et al. (2019). 
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Table 6. Usage of wearable devices, smartphone and mood self-assessment’s methods in the review studies 
 

Publication Wearable devices Smartphone Self-assessment of 
mood 

Braund et al. 2022 no GPS and mood app Socialise 

Busk et al. 2020 no mood app yes 

Carr et al. 2018 Proteus patch mood app Mood Zoom 
application 

Cho et al. 2019 Fitbit Charge HR, Fitbit Charge 2 light sensors and mood 
app eMoodchart 

Esaki et al.2021 Actiwatch Spectrum Plus no no 
Grierson et al. 2016 Actiwatch-64/L/2/Spectrum no no 

Kim et al. 2024 Fitbit Charge 4 light sensors and mood 
app EMA 

Kumagi et al. 2019 Silmee W20 Kurashi-app K6 

Lee et al. 2022 Fitbit Charge HR, Fitbit Charge 2, and 
Fitbit Charge 3 

light sensors and mood 
app eMoodchart 

Lim et al. 2024 Fitbit Charge HR, 2 or 3 no no 

 
In a more recent study, Lim et al. (2024) examined 168 patients diagnosed with affective disorders over 

a mean observation period of 267 days. Data collected included sleep-wake patterns via Fitbit wearable devices, 
from which they derived 36 features: sleep windows (comprehensive sleep periods, classifications of sleep 
windows as long/short (threshold: 3.75h), sleep time (ST) and wake time (WT) within windows, sleep 
percentage and sleep amplitudę, circadian phase (estimated from core body temperature modeling), circadian 
amplitudę and daily mood and energy self-assessments collected through the eMoodChart smartphone app. 
Comparing to Lee’ study, Lim’ study covers lesser range of concepts, excluding i.a. step counts or light 
exposure. Lim’s study is more structured and statistically detailed, particularly in breaking down sleep metrics 
into long vs. short windows and analyzing them through Z-scores, Means, and Standard Deviations. Some 
features directly used in Lee’s study were indirectly used, for ex. heart rates in CR parameters. 

Lim et al. (2024), similarly to Cho et al. (2019), used both personalized and general models. However, 
Lim et al., contrary to Cho's findings, observed decreased accuracy with personalization compared to their 
general model, which achieved AUC values of 0.925 for depressive episodes, 0.984 for manic episodes, and 
0.985 for hypomanic episodes. The purpose of Lim et al.'s (2024) study was to present clinically applicable 
models with short training periods of personal data (30 days and 60 days). Although the intentional shortening 
of observation periods resulted in poorer prognostic value than their general model, the personalized approach 
still preserved high accuracy for next-day affective episodes (AUC values of 0.75, 0.98, and 0.95 for depressive, 
manic, and hypomanic episodes, respectively). This suggests the approach could be valuable even with 
relatively brief 30-day observation periods. The AUC values for depressive episode prediction rose to 0.8 with 
60-day observation periods. It should be noted that Lim et al. (2024) did not provide detailed data for 
calculating AUC, particularly the test sensitivity parameter; however, the high AUC results are sufficient to 
consider the model precise, as sensitivity was a main disadvantage in Cho et al.'s study. 

Lim et al. (2024) obtained significantly poorer predictive values for depressive episodes, which may 
result from the lack of subjective mood measurements and the less pronounced relationship between MDD 
and changes in daily activity, particularly the key indicator in the study: daily circadian phase shifts. Another 
observation by the researchers is the correlation between delayed circadian cycle and depressive episodes, and 
acceleration with manic episodes (similar to Moon et al., 2016). 

According to Lim's study, the relationship between hypomania and circadian rhythms differs from that 
of mania and depression, as the linkage is rather non-monotonic, unlike in mania and depression, and non-
monotonic analyses like the XGBoost training are necessary to obtain reliable data. This could explain why 
Song et al. (2024) in their recent study could not find a relationship between diurnal rhythm changes and BP 
II. Lim's study also points to difficulties with classification of hypomania due to different hypomania symptom 
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presentations, including dysphoric hypomania, mixed hypomania, and its differentiation from depressive 
mixed states. 

Kim et al. (2024) represent a significant advancement in the early prediction of depressive episodes in 
mood disorders through the novel application of deep learning techniques to circadian rhythm indicators. This 
study utilized data from 164 participants. Unlike earlier approaches that primarily focused on three day 
prediction windows, Kim and colleagues extended the prediction timeframe to seven days, allowing for better 
preparation and intervention strategies. Kim et al. emphasized DLMO as a primary circadian marker, using 
two distinct DLMO estimation formulas based on sleep information. Unlike earlier studies, Kim et al. omitted 
self-assessment data from participants. 

The study's methodology employed several deep learning models, including Long Short-Term Memory 
(LSTM), Gated Recurrent Unit (GRU), and a hybrid LSTM-GRU approach, to analyze time-series features 
related to sleep, heart rate, activity levels, and light exposure. This approach builds upon previous work but 
extends it through the application of more sophisticated neural network architectures specialized for sequence 
data. Previous studies used Ensemble Learning Models, which are machine learning rather than deep learning 
models, such as random forest and XGBoost. 

Notably, Kim et al.'s results revealed that the GRU model achieved the highest sensitivity (0.767) for 
predicting depressive episodes, while the LSTM model demonstrated superior robustness across metrics with 
an average recall of 0.748. These results provide a different perspective compared to the AUC values reported 
by Lim et al. for depressive episodes (0.925), though the extended prediction window in Kim's study presents 
additional challenges that may account for the differences in performance metrics. 

The study by Busk et al. (2020) examined the feasibility of forecasting mood in bipolar disorder using 
smartphone-based self-assessments. The research involved 84 participants with bipolar disorder, collecting a 
substantial dataset of 15,975 daily self-assessments and 280 clinical evaluations over approximately 9 months 
as part of the MONARCA II randomized clinical trial. This corresponds to an average of 190.2 self-
assessments per participant with a high adherence rate of 82.8%.  

Participants used an Android smartphone app to evaluate subjective measures of illness activity through 
a daily self-assessment questionnaire. The items included mood (scored from -3 to +3), activity level, alcohol 
consumption, anxiety, irritability, cognitive difficulty, medicine adherence, mixed mood, sleep, and stress. The 
optimal window size for forecasting was determined to be 4 days of historical data. Feature importance analysis 
revealed that historical mood was the most important predictor variable (4.53), followed by anxiety (2.78), 
irritability (2.74), and mixed mood (2.09). For 1-day forecasts, the model achieved R²=0.51 and RMSE=0.32, 
and for 7-days (RMSE=0.375). The lack of other statistical data presentation, it cannot be compare to accuraty 
measure from other studies. 

The study found significant correlations between self-reported mood scores and clinical assessments, 
like HDRS and YMRS scores. Unlike some other studies in this field that focused on classification of mood 
states, and did not incorporate objective smartphone sensor data such as physical activity metrics, GPS location 
data or passive measures of sleep patterns. 

Braund et al. (2022) conducted a longitudinal observational study examining the relationship between 
circadian rhythm, extracted from smartphone GPS data, and mental health symptoms among adults diagnosed 
with major depressive disorder (MDD) or bipolar disorder (BD). This 10-week study with 121 clinically 
diagnosed participants provides important insights into the limitations of sigle circadian measures for 
forecasting future mood trayectory and affective episodes. The researchers collected GPS data from 
participants' smartphones and calculated circadian rhythm as the regularity of location changes in a 24-hour 
pattern. Unlike previous studies that aimed to predict the occurrence of mood episodes, Braund et al. focused 
on examining relationships between baseline circadian rhythm and changes in clinical symptoms over time. 
Interestingly, the study found no significant association between circadian rhythm at baseline and mental health 
symptoms over 10-weeks period. The limitations of this study exemplify the challenges in using insufficient 
theoretical approach by rather estalish baseline circardian rythms than characteristic changes. Other limitations 
inculde choice of single type of data (GPS) and insufficent observation period (24-hours).  
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Table 7. Number of participants in the reviewed studies 
 

Study Total 
Participants 

MDD 
(n) BD (n) Additional Notes 

Braund 2022 121 79 42 Participants with MDD or BD; no exact split stated. 

Busk 2020 84 0 84 All diagnosed with BD 

Carr 2018 54 0 20 Others: 14 borderline personality + 20 healthy 
controls. 

Cho 2019 55 18 37 BD: 18 BD I + 19 BD II; korean Mood Disorder 
Cohort Research Consortium (MDCRC) 

Esaki 2021 189 0 189 All with BD 

Grierson 2016 63 33 30  

Kim 2024 168 57 111 BD: 42 BD I + 69 BD II; korean Mood Disorder 
Cohort Research Consortium (MDCRC) 

Kumagi 2019 89 89 0 All had MDD. 

Lee 2022 495 95 175 BD: 78 BD I + 97 BD II; korean Mood Disorder 
Cohort Research Consortium (MDCRC) 

Lim 2024 168 57 111 BD: 42 BD I + 69 BD II; korean Mood Disorder 
Cohort Research Consortium (MDCRC) 

 
Prediction of Affective Disorder Severity  
Grierson et al. (2016) conducted a study on a group of 63 individuals aged 13-25 years with a first 

episode of mood disorder within the diagnosis of MDD or BD. The authors recruited individuals with 
'emerging mood disorders,' i.e., at an early stage of the disease. The measurement of disease severity for 
correlation purposes was performed during, immediately before/after the two-week period of actigraphic 
recording. The study was based on a simple indicator for assessing circadian rhythm using wrist actigraph data, 
and the following parameters were distinguished: amplitude, acrophase (hour of greatest activity), and 
rhythmicity index. The observation period was 14 days. Longer duration of illness was associated with reduced 
amplitude in daily activity patterns (r = -0.25, p = 0.045). Youth who had experienced symptoms for a longer 
period demonstrated weaker circadian rhythmicity (r = -0.33, p = 0.01). Only higher manic symptom scores 
corresponded with a delay in the timing of maximum daily activity (r = 0.28, p = 0.03). The circadian 
rhythmicity index significantly differentiated between MDD and BD groups after controlling for potential 
confounders (F = 2.34, df = 6, 56; p = 0.044). Additionally in participants with bipolar disorder specifically, 
both increasing depressive and manic symptoms severity were accompanied by diminished circadian rhythm 
robustness, a pattern not observed in unipolar disorder cases. These findings suggest that disrupted circadian 
rhythmicity, particularly when associated with symptom severity, may serve as a distinguishing characteristic 
of young people at elevated risk for a bipolar illness trajectory. 

 
Forecasting of Increased Chance For Future Affective Episodes  
Kumagai, Esaki, & Lee (2019) conducted an explanatory feasibility study to investigate whether lifelog 

data collected through smartphones and wearable devices could identify warning signs of depression 
recurrence. The study employed a panel vector autoregressive (PVAR) approach to analyze the bidirectional 
relationships between lifestyle factors and depression symptoms. 

The researchers collected digital data consisting of individual activity records (lifelog data) from 89 
patients who were on maintenance therapy for recurrent depression over a one-year period. All participants 
were in remission at baseline as defined by Beck Depression Inventory-II scores of 9 or less. Data collection 
utilized a smartphone application called Kurashi-app ("life" in Japanese) on iPhones and a wearable device 
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(Silmee W20). The Kurashi-app helped track 16 types of activities, including meeting friends/family, bathing, 
childcare, commuting, domestic work, exercise, hospital visits, meals, shopping, sitting idly, sleep, study/work, 
hobbies, media consumption, reading, and other activities. 

Depression symptoms were assessed using both the Kessler Psychological Distress Scale (K6), which 
participants completed weekly through the app, and the Patient Health Questionnaire-9 (PHQ-9), which 
clinical coordinators administered monthly by phone. For the analysis, the researchers developed a five-variate 
PVAR model that examined the relationships between K6 scores, sleep patterns (long/short sleep time), 
standardized variable of missed lunches, UV light exposure (as a proxy for outdoor activity), and sitting idly. 

The panel vector autoregressive analysis revealed that long sleep time was a significant risk factor for 
depression recurrence. They identified long sleep based on when a person's sleep duration exceeded their own 
7-day average plus the standard deviation. Long sleep was defined relative to each person's own typical weekly 
pattern. The 3-week lagged effect was statistically significant with a coefficient of 0.271 for all age groups 
except 50-59 years. The p-value associated with this coefficient was <0.001. The predictive factor is the 
opposite of the characteristic symptom, which is insomnia and was reported by 75% of patients according to 
the review of the research results, confirming that it is a pure predictive factor and not an early symptom of 
depression. Other factors initially considered, including not eating lunch regularly, sitting idly, and UV 
exposure (as a measure of outdoor activity), were not significant predictors when analyzed jointly with long 
sleep time. As the authors stated, this might have been due to the relatively small sample size. Specifically, 
long sleep predicted depression recurrence after a 3-week lag. 

When participants were stratified by age, long sleep in patients aged 50-59 years predicted depression 
recurrence after 4 weeks, while in other age groups it predicted recurrence after 3 weeks with a coefficient of 0.240. 

The study employed several methodological innovations, including the use of PVAR models to account 
for bidirectional relationships between lifestyle factors and depression symptoms, and the application of both 
K6 and PHQ-9 assessments to enhance data completeness. The researchers also carefully addressed missing 
data through multiple imputation techniques. 

This research furnishes important knowledge about the possible use of digital phenotyping for the early 
detection of recurrent depression. In its manifestations, depression can be either unipolar or bipolar. In the case 
of bipolar illness, the more serious affects can be compounded by potential long term health and mental 
problems related to the depressive phases. Even when not as serious, disruptions to sleep on a regular insomnia 
cycle and/or hypersomnia (long sleep and/or depression) every night can lead to problems with the following: 
(1) physical health (fatigue and potential obesity); (2) mental health (potential increased depression and not 
improving condition); and (3) potential serious long-term cognitive problems. 

Esaki et al. (2021) conducted a 12-month prospective cohort study to examine the relationship between 
circadian activity rhythms and mood episode relapses in patients with bipolar disorder. The researchers 
recruited 189 outpatients with bipolar disorder who participated in the "Association between the Pathology of 
Bipolar Disorder and Light Exposure in Daily Life (APPLE) cohort study." Participants' physical activity was 
objectively assessed using a wrist-worn accelerometer over 7 consecutive days for the baseline assessment and 
then at the 12-month follow-up for mood episode relapses. 

The levels and timing of the circadian activity rhythms were estimated using a cosinor analysis and a 
nonparametric circadian rhythm analysis. Of the 189 participants, 88 (46%) experienced mood episodes during 
the 12-month follow-up. The Cox proportional hazards model adjusting for potential confounders showed that 
a robust circadian activity rhythm, including midline-estimating statistic of rhythm (MESOR) and amplitude 
by cosinor analysis and 10 consecutive hours with the highest amplitude values (M10) by the nonparametric 
circadian rhythm analysis, was significantly associated with a decrease in mood episode relapses (MESOR, 
0.993; amplitude, 0.994; and M10, 0.996). 

A later timing of the circadian activity rhythm (M10 onset time) was significantly associated with an 
increase in the depressive episode relapses (per hour; 1.109 [1.001–1.215]). These findings complement the 
study by Grierson et al. (2016), who observed that in young people with bipolar disorder, both increasing 
depressive and manic symptom severity were accompanied by diminished circadian rhythm robustness. Esaki 
et al. (2021) further demonstrated that temporal parameters of circadian activity rhythm, particularly delayed 
phase, may be specifically associated with depressive episode relapses. 

It is worth noting that similar to Grierson's study, which showed that longer duration of illness was 
associated with reduced amplitude in daily activity patterns (r = -0.25, p = 0.045), Esaki's study suggests that 
reduced physical activity level is associated with a higher risk of mood episode relapse. 
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Differentiation Between Mood-Associated Disorders in Stable Period  
Carr et al. (2018) investigated the relationship between diurnal rhythm variability and mood fluctuations 

in BD, Borderline Personality Disorder and control groups for four days using a Proteus patch (recording heart 
rate and acceleration), actigraphy, and a smartphone app called Mood Zoom (MZ). Additionally, participants 
were studied during euthymic or relatively stable states rather than during acute mood episodes. 

The MZ app collected self-reported mood ratings (anxious, elated, sad, angry, irritable, and energetic) 
ten times daily. Variability in these mood scores was quantified using standard deviation, TKEO (Teager-
Kaiser Energy Operator), entropy, and RMSSD (Root Mean Squared Successive Differences).  

The results obtained in the study were not very spectacular. They showed that people with BPD have a 
statistically significant decrease in mood (daily MZ variability measures with delayed sleep phase. 
(coefficiency of 0.703, p-level = 0.05) Such an effect was not shown for people with BD, while the trends were 
0.384 for BD and -0.134 for HC, respectively. The observation lasted only 4 days. However, Carr's study is 
significant in the context of the need to differentiate BD and BPD, especially in the case of short measurements, 
which may be more significant for BPD for some parameters. Additionally, a trend can be observed from 
healthy people for whom the sleep phase shift improved mood, through people with BD in whom it worsened, 
to BPD in whom it strongly worsened mood. 

When comparing BD and BPD specifically, several key differences emerged. While BPD showed strong 
correlations between heart rate variability and mood measures (particularly irritability), BD patients 
demonstrated no such relationship. This suggests that BD may be characterized primarily by sleep rhythm 
disturbances, while BPD demonstrates broader dysregulation across multiple physiological systems..  

The study was limited by its short observation period (4 days) and the Proteus patch's inability to capture 
beat-to-beat heart rate variability (HRV) like traditional ECG monitors do. Instead, it recorded less soficticated 
parameters an average heart rate over 5-minute intervals with 1-minute sampling. 

 
Discussion 
The presented studies demonstrate the possibility of significant advancement in the field of psychiatry, 

as they showcase the application of technology not only for diagnosing but also for predicting future affective 
episodes. The possibility of applying this technology stems from prior development of knowledge about factors 
that trigger episodes of affective disorders, specifically the dysregulation of circadian rhythms. Identifying risk 
factors and their constant systematic measurement represents a particularly important direction for the 
advancement of psychiatry. Studies by Lee et al. (2022), Lim et al. (2024), Cho et al. (2019), and Kim et al. 
(2024) demonstrated robust evidence that circadian rhythm metrics (e.g., amplitude, phase shifts, rhythm 
stability) predict mood episode relapse with significant accuracy. Particularly, Lim et al. (2024) provided 
strong evidence that delays or advances in circadian phase effectively predict depressive and manic/hypomanic 
episodes, respectively. Continuous passive monitoring through wearable technologies and smartphones offers 
an unprecedented opportunity to predict mood episodes before clinical onset. Such technology could 
significantly reduce healthcare burdens and improve patient quality of life by enabling early interventions. 

Psychiatry, as a field of science predominantly based on periodic meetings, subjective criteria, and 
reactive intervention, may transform to continuous monitoring based on digital phenotyping data, prevention 
of deterioration, and highly personalized interventions (Lanata, Valenza, Nardelli, Gentili & Scilingo, 2015; 
Lipschitz, Lin, Saghafian, Pike & Burdick, 2025). 

Methods of data collection varied greatly among studies, ranging from smartphone self-assessments, 
wearable devices tracking physiological parameters, and a combination of lifelogging technologies such as 
GPS and sleep trackers as showed in tabel no. 6. Observation periods spanned from relatively short-term (4-
14 days, Carr et al., 2018; Grierson et al., 2016) to long-term follow-up (~2 years, Cho et al., 2019), 
significantly influencing the reliability and generalizability of predictions. Although promising, current 
evidence calls for standardized protocols, larger and more diverse sample sizes, longer-term observational 
periods, and real-world replication to confirm the reliability, validity, and generalizability of predictive models 
across various clinical settings. 

The separation of training and validation datasets was explicitly addressed in most studies, enhancing 
methodological rigor. For instance, Kim et al. (2024), Lim et al. (2024), and Lee et al. (2022) specifically 
utilized distinct validation datasets, increasing confidence in their predictive models' real-world applicability. 
However, the clinical validity varied; shorter-duration studies (Carr et al., 2018; Grierson et al., 2016) provided 
valuable insights but limited long-term clinical predictive power. While highly predictive models (e.g., Lim et 
al., 2024; Lee et al., 2022) demonstrate readiness for clinical translation, their routine clinical implementation 
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still requires validation through large-scale, multi-center trials and practical assessments in diverse healthcare 
environments. 

The capability to apply technology is a result of prior development of knowledge about factors triggering 
episodes of affective disorders through circadian rhythm dysregulation. Achieving these capabilities derives 
from technological advancement, particularly user-friendly commercial technologies that eventually become 
available to a wide audience. This review excellently exemplifies the development of modeling and 
algorithmization. The diverse data analysis methods employed by study authors demonstrate broad 
possibilities for improving indicator values using various statistical methods, machine learning, and deep 
learning techniques. 

One of the primary challenges present in most studies of this type is patients' non-compliance with 
recommendations. Cho et al. (2019) included only 11% of complete data, while Lee et al. (2023) applied 
mathematical models to supplement data for approximately 38% of the database. Kumagai et al. (2019) utilized 
data completion methods with validation. Kim et al. (2024) employed a dual approach for estimating missing 
data through deep learning and SMOTE, a technique used in machine learning to address unbalanced datasets. 
Busk et al. (2020) assessed their method of estimating missing data as insufficient and had to limit the number 
of observations included in their analysis. 

Wenze & Miller (2010) note that individuals with affective disorders show reduced willingness to follow 
instructions due to their symptoms; some consider wearable devices unaesthetic, too large, or uncomfortable 
during sleep. Notably, due to the nature of collected data, sleep information is often crucial for assessing 
circadian rhythms. Van Til et al. (2019) points out that data loss frequently results from participants forgetting 
to wear their bands, smartwatches, or charge batteries. For FitBit bands specifically, users may forget to enable 
Bluetooth during synchronization. Additionally, changes in participants' daily routines (often related to 
symptoms) may result in failure to adjust application settings to new sleep or activity schedules. Other 
objective obstacles to data collection include network access problems or smartphone incompatibility. 

As reported by Van Til et al. (2019), some participants found daily EMA cumbersome or "annoying" 
and grew tired of frequent notifications to complete smartphone questionnaires. Some patients reported 
uncertainty about correctly assessing their mood; interestingly, the act of mood assessment itself expanded 
patients' emotional awareness (Mughal, Raffe, Stubbs, Kneebone & Garcia, 2022). Nevertheless, the overall 
assessment of wearable devices was positive. Van Til et al. (2019) indicated that most participants evaluated 
using Fitbit more favorably compared to actively completing smartphone applications, noting that bands are 
less engaging and require less effort for daily monitoring. Similarly, Ringeval, Wagner, Denford, Paré & 
Kitsiou (2020) observed that wearing Fitbit-type bands typically does not overly burden participants. In another 
study, Mughal et al. (2022) reported that 78% of participants described the tested procedure (combining device-
based activity monitoring with online questionnaires) as "not very burdensome" and even beneficial for 
increasing self-awareness. Participants generally tolerated both band and smartwatch measurements and 
mobile application assessments well, especially when systems were designed with user convenience and clear 
instructions in mind (Lipschitz et al., 2025). 

The early detection of circadian rhythm disorders enables timely contact between mental health 
specialists and patients to propose appropriate treatment (Lanata et al., 2015). In comparative studies, Cho et 
al. (2020) demonstrated significant improvement in patients who received mood monitoring with feedback and 
warnings about deterioration risks related to circadian rhythm disorders. Improvements included less frequent 
affective episodes and shorter episode durations, resulting from enhanced patient self-awareness. Other 
researchers reported increased patient engagement in treatment processes and improved self-discipline 
associated with feedback (Mughal et al., 2022; Van Til et al., 2019). Treatment monitoring may facilitate more 
tailored appointment scheduling with mental health specialists or identify needs for treatment modification 
(Lanata et al., 2015). Hickman, D'Oliveira, Davies & Shergill (2024) advocates for integrating monitoring 
systems with remote care and proactive physician engagement through messaging, online consultation offers, 
or other interventions. 

From the perspective of digital phenotyping technology development, key priorities include maintaining 
maximum patient privacy while preserving high model predictive capabilities, establishing trust in monitoring 
entities, and addressing legal data protection issues. Health data, particularly mental health information, 
constitutes a special category of sensitive data. Various authors note that geolocation data and voice recordings 
generate greater resistance among patients compared to heart rate or step count monitoring (Lipschitz et al., 
2025). Building patient trust in proposed solutions requires transparent policies regarding data storage and 
deletion, options for patients to opt out of monitoring, and clear data retention periods. This directly addresses 
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concerns expressed by study participants (Mughal et al., 2022). Antosik-Wójcińska et al. (2020) highlights 
that the two primary smartphone operating systems (iOS and Android) may not fully integrate with research 
applications, and some research applications lack clearly established privacy policies. 

 
Conclusions 
This systematic review demonstrates that the edifice of empirical research has arisen to show that tech 

we can wear and the smartphone we can hold can do a good job of predicting when we might be about to have 
an affective episode. As in, they can tell when there's a disturbance in our circadian rhythms and thus predict 
when we're going to be in danger of having a mood episode. Because these are the first methods we've had 
with the reliability necessary for the consistent clinical use hinted at by their potential in the studies we've 
reviewed, it's worth diving into the specific findings of the studies themselves. 

Main findings are: (1) predicting episodes of affective disorder within 1 to 28 days before the clinical 
event occurs; (2) the use of models that are personalized and account for a person's baseline pattern; (3) the 
combination of monitoring a person's physiology in a passive manner with ecological momentary assessment; 
and (4) using machine learning and deep learning to obtain a greater predictive accuracy. 

If these predictive models are to be fully implemented in the clinical setting, several obstacles will need 
to be cleared first. For one, obtaining the necessary data is a challenge; issues of data completeness have 
already been problematic in the past, and there's no indication that this will improve soon. If we want to use 
user data to predict user behavior, we must first collect that data—and in a diverse user way—that is also neat 
and tidy, so to speak. User adherence to the platform and privacy concerns are also significant challenges. 
Conversations around these two topics could fill several books, so I'll leave them at that. Altogether, if we 
want to make these models work in a clinical context, we must first prove that they are valid and reliable across 
all involved parameters. 

Digital phenotyping technologies are changing. They are being integrated into psychiatric practice, and 
we see this as a promising development. When we say "affective disorders" in this context, we are referring to 
the kinds of illnesses that largely make up what is commonly called "mental illness." The two examples we 
gave were depression and bipolar disorder. 
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