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 This study was conducted in the agricultural region of Guelma, located in 
northeastern Algeria, where groundwater is the main source of water for human 
consumption, agriculture, and industry. The objective was to characterize 
groundwater quality and identify potential pollution sources using multivariate 
statistical methods, including Principal Component Analysis (PCA), 
correlation matrix, and the Piper diagram. The analyses revealed strong 
correlations between certain ions, such as sodium and chloride, suggesting 
carbonate dissolution processes, such as calcite and dolomite, leading to 
increased water hardness. The Piper diagram allowed for the classification of 
water types based on the relative concentrations of major cations (Ca²⁺, Mg²⁺, 
Na⁺+K⁺) and anions (Cl⁻, SO₄²⁻, CO₃²⁻+HCO₃⁻), showing a predominance of 
mixed hydrochemical types influenced by both natural and anthropogenic 
processes. 
PCA then simplified the interpretation by identifying the most influential 
variables that could serve as key indicators for the continuous monitoring of 
water quality. Overall, the results indicate that groundwater chemistry in this 
region is strongly influenced by human activities and local geological 
conditions, highlighting the need for sustainable management and continuous 
monitoring to protect this vital resource. 
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1. Introduction. 
Groundwater is a crucial water resource for potable water supply. Similarly, groundwater 

resources provide significant natural wealth for the socio-economic development of a country (Flörke, 
Schneider et al. 2018). Irrigation and industrial uses in many countries, especially in arid and semi-arid 
areas(Moukhliss, Koubi et al. (2023); Ji, Wu et al. (2020)) where surface water resources and 
precipitation are limited. Moreover, natural factors such as climate, the nature of aquifer rocks, and 
interactions between groundwater and these rocks, as well as anthropogenic factors like agriculture and 
fertilizer use, significantly influence the quality of groundwater in the short or long term (Alabjah, 
Amraoui et al. (2018);Moukhliss and Taleb (2021)), thus endangering these vital resources, especially 
those considered a safe source for consumption, domestic, industrial, and agricultural uses(Li, Tian et 
al. 2017). Additionally, industry and urban development influence the quality of groundwater in a 
sustainable or unsustainable manner (Wu, Li et al. 2020) Also, waste has contributed to the deterioration 
of groundwater quality by releasing heavy metals, organic, and inorganic chemical substances into the 
aquifer (Islam, Shen et al. 2018). Although monitoring data (physical and chemical parameters) cannot 
explain, interpret, and identify the source of pollution due to their complexity, it is proven that 
multivariate statistical approaches are an effective means for interpreting complex data matrices. Indeed, 
several multivariate statistical methods have been employed to estimate water quality by detecting 
pollution sources and their moderating parameters (Wu, Li et al. (2014); Zhang, Wang et al. (2017); 
Gulgundi and Shetty (2018)). Although several multivariate statistical methods include cluster analysis 
(CA), factor analysis (FA), principal component analysis (PCA), and multiple linear regression (MLR) 
(Moukhliss, Taleb et al. (2023); Li, Zhang et al. (2020)), PCA is the most effective and widely used 
multivariate statistical method to identify explanatory factors for recognizing potential pollution sources 
by specifying the main components of groundwater data sets (Qilin, Xiaodan et al. (2020) ; Bhutiani, 
Kulkarni et al. (2016); BENMARCE, CHOUABBI et al. (2014)), as a means of reducing statistical data. 
PCA is generally coupled with the hydrochemical approach to define the anthropogenic and natural 
processes that contribute to the degradation of groundwater quality (Ayed, Jmal et al. 2017).  

The study was conducted in the agricultural region of Guelma in northeastern Algeria (Baazi 
2023), where groundwater is the main source of water for human consumption, agriculture, and industry. 
The use of fertilizers and long-term wastewater threatens groundwater quality in this region. Indeed, 
previous studies conducted in the study area have highlighted agricultural-origin pollution of the aquifer, 
using groundwater vulnerability assessment methods DRASTIC and SI (Baazi 2023) and the GOD 
method (Houria and Naima (2023); Latifi and Chaab (2017)). Consequently, the vulnerability maps 
obtained by the three methods revealed three classes (high, medium, and low), proving the 
contamination of the study area. PCA was used in this study to characterize groundwater quality and 
identify pollution sources. 

 
2. Stady Area. 
The Guelma-Boumahra plain, covering an area of approximately 122 km², stretches over about 

twenty kilometers from east to west and 3 to 10 kilometers from north to south. Integrated into the vast 
hydrographic basin of the Oued Seybouse, it is bordered by significant mountain ranges: the Houara and 
Djebel Bousbaa to the north, the Mahouna and Beni Marmis to the south, Djebel Arar to the west, and 
the Nador massif to the east (Gouaidia Samira 2019). This region, with an average altitude of 227 meters, 
is primarily dedicated to agriculture and relies on the Guelma alluvial aquifer (Houria and Naima 2023). 
The geology of the Guelma region is composed of three main formations : pre-aquifer layers, Miocene 
and Pliocene sediments (originating from the Guelma basin), and more recent Pliocene and Quaternary 
deposits. The neritic domains of Djebel Debagh, Héliopolis, and the southern part of Guelma all belong 
to the Guelma region. This Jurassic-Cretaceous carbonate basement includes several thrust sheets and 
has undergone significant tectonic events (Houria and Naima 2023). The Oued Seybouse is formed by 
alluvium (Vila 1980) between Nador and Medjez Amar, consisting of gypsiferous marls and Quaternary 
deposits (heterogeneous alluvial terraces). 
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Figure 1. Map of geographical location of study area. 
 

3. Materials and methods. 
3.1.  Sampling and Analysis. 
In this study, a total of 60 sample analysis results were obtained from the National Agency 

of Water Resources (A.N.R.H.) in Guelma. The analysis results span a 9-year period (from 2013 to 
2019) and are distributed across 10 wells. The results include concentrations of physical parameters 
such as electrical conductivity (EC) and total hardness (TH), major elements like calcium (Ca2+), 
magnesium (Mg2+), potassium (K+), sodium (Na+), bicarbonates (HCO3

-), sulfates (SO4
2-), and 

chloride (Cl-), as well as pollution indicators such as nitrates (NO3
-), ammonium (NH4

+), iron (Fe2+), 
and orthophosphates (PO4

3-). 
              
 Table 1. Descriptive Statistics of chemical elements. 

 
Variables Cond HCO3. TH Ca2.             Mg2.             Cl. SO42- NO3                 K.             Na. 
Min 563    134.1 0.43   110.5    8.46    127.8    48.48   1.942 0.6004    51.15   
1st qu 1027 278.2    42.85   129.0 20.65    156.2    85.91   4.836    1.4522    63.59   
Median 1131 301.3 45.10   138.4    25.87    184.6    103.01   9.190    2.2999    70.82   
Mean 1218 302.5    45.78   140.4    26.54    216.9    113.97   11.399    2.4685    82.82   
3rd qu 1284   317.2    49.40 147.5 32.13    258.9    116.50   13.940    2.8240    94.59   
Max 2980 484.3    88.20   40.082    69.14    461.5 323.00   40.082    10.6996    194.39   

 
3.2.  Statistical analysis. 
Correlation matrix analysis (CMA) and principal component analysis (PCA) for groundwater 

physicochemical parameters are multivariate statistical methods performed using RStudio. Indeed, 
CMA was carried out to determine the degree of correlation between each pair of water quality 
parameters. The degree of dependence of one parameter on another is analyzed using Pearson's 
correlation coefficient (r), which varies from -1 (negative correlation) to 1 (positive correlation). If the 
value of r is close to zero, it means that there is no correlation between the variables (Strickert, Schleif 
et al. 2009). Pearson's correlation coefficient can be expressed as follows: 

 

 

𝑟 = 	
∑ (𝑋𝑖 − 𝑋))(𝑌𝑖 − 𝑌))𝑛
𝑖=1

.(𝑋𝑖 − 𝑋))2.(𝑌𝑖 − 𝑌))2
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where	𝑋#  ,𝑌#   are the means of X and Y, respectively; i is the total number of variables. Principal 
Component Analysis (PCA) is a statistical method used to reduce the dimensionality of a dataset while 
preserving as much of the variability present in this data as possible( Wu, Li et al. (2014); Li, Tian et al. 
(2019)). It is particularly useful in situations where there are a large number of variables and it allows 
for a simpler analysis and interpretation of the data, which explains its use in the field of water quality 
characterization. The analysis transforms the original variables into uncorrelated (orthogonal) principal 
components, which are expressed as follows: 

 
𝑧!" = 𝑎#$𝑥$% + 𝑎#&𝑥&% + 𝑎#'𝑥'% +⋯+ 𝑎#(𝑥(% 

 
where z is the component ordre; a is the component loading; x is the measured value of the variable; i is 
the component number; j is the sample number; and m is the total number of variables. 

 In this Research, 10 groundwater quality parameters were exploited. Data verification was 
performed to meet the Kaiser-Meyer-Olkin (KMO) criteria (Noori, Abdoli et al. 2009). The minimum 
KMO value is 0.5 for the reliability of applying PCA (Williams, Onsman et al. 2010). Similarly, 
Bartlett's sphericity test was used to verify the suitability of applying PCA. If the significance level of 
Bartlett's test is sufficiently low (< 0.05), it means that the correlation matrix is not an identity matrix, 
thus indicating that PCA is applicable to the correlation matrix (Ayed, Jmal et al. 2017). Principal 
components (PCs) were selected according to Kaiser's criterion. Principal components (PCs) with 
eigenvalues greater than 1.0 were retained. Eigenvalues reflect the importance of each PC ; thus, a PC 
with higher eigenvalues is considered more significant (Gulgundi and Shetty 2018). Eigenvalues were 
derived from the covariance matrix of the initial variables (Chabukdhara and Nema 2012). The first 
component captured the most variance in the dataset, followed by the second component, and so on. 
Similarly, to make the factors more interpretable without modifying the initial mathematical dataset, the 
extracted PCs were rotated. In order to better understand the factors influencing groundwater quality, 
we applied a varimax rotation to the data. This statistical method makes the results more readable by 
rotating the factor axes in a way that maximizes the variance explained by each factor. Thus, the least 
importantes variables are less loaded on the main factors, which facilitates the identification of pollution 
sources. The factor loadings obtained after rotation indicate the degree of correlation between each 
parameter and each factor. The higher a loading, the more the corresponding factor contributes to 
explaining the variation of the parameter in question (Ielpo et al., 2012; Felipe-Sotelo et al., 2007)., 10 
groundwater quality parameters were exploited. Data verification was performed to meet the Kaiser-
Meyer-Olkin (KMO) criteria (Noori, Abdoli et al. 2009). The minimum KMO value is 0.5 for the 
reliability of applying PCA (Williams, Onsman et al. 2010). Similarly, Bartlett's sphericity test was used 
to verify the suitability of applying PCA. If the significance level of Bartlett's test is sufficiently low (< 
0.05), it means that the correlation matrix is not an identity matrix, thus indicating that PCA is applicable 
to the correlation matrix (Ayed, Jmal et al. 2017). Principal components (PCs) were selected according 
to Kaiser's criterion. Principal components (PCs) with eigenvalues greater than 1.0 were retained. 
Eigenvalues reflect the importance of each PC ; thus, a PC with higher eigenvalues is considered more 
significant (Gulgundi and Shetty, 2018). Eigenvalues were derived from the covariance matrix of the 
initial variables (Chabukdhara and Nema, 2012). The first component captured the most variance in the 
dataset, followed by the second component, and so on. Similarly, to make the factors more interpretable 
without modifying the initial mathematical dataset, the extracted PCs were rotated. In order to better 
understand the factors influencing groundwater quality, we applied a varimax rotation to the data. This 
statistical method makes the results more readable by rotating the factor axes in a way that maximizes 
the variance explained by each factor. Thus, the least importantes variables are less loaded on the main 
factors, which facilitates the identification of pollution sources. The factor loadings obtained after 
rotation indicate the degree of correlation between each parameter and each factor. The higher a loading, 
the more the corresponding factor contributes to explaining the variation of the parameter in question 
(Ielpo et al., 2012 ; Felipe-Sotelo et al., 2007). 

 
4. Results and discussion. 
4.1 Physicochemical parameters. 
The descriptive statistics of the physicochemical parameters of groundwater samples collected 

from 60 wells during the period (2013-2019) are presented in Table 1. During this period, some 
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physicochemical parameters showed a wide variation. The minimum and maximum concentrations of 
Ca²⁺, Mg²⁺, and TH ranged from 110.5 mg/L, 8.46 mg/L, and 0.43 mg/L to 237.9 mg/L, 69.14 mg/L, 
and 88.20 mg/L, respectively. Meanwhile, the concentrations of Na⁺, Cl⁻, and SO₄²⁻ ranged from 51.15 
mg/L, 127.8 mg/L, and 48.48 mg/L to 194.39 mg/L, 461.5 mg/L, and 323 mg/L, respectively. The 
values of electrical conductivity and HCO₃⁻ varied from 563 µS/cm to 2890 µS/cm and from 134.1 
mg/L to 484.3 mg/L. 

The Piper diagram was used to represent the groundwater samples. (Fig. 2) to determine the 
dominant hydrochemical types of groundwater in the study area. Cations (Bottom left triangle: Ca²⁺, 
Mg²⁺, Na⁺+K⁺): The majority of points are located near the Ca²⁺ axis, indicating that calcium is the 
dominant cation in these water samples. There are also points in the region between Ca²⁺ and Mg²⁺, 
suggesting a notable presence of magnesium but still with a dominance of calcium. The water samples 
are predominantly "Calcareous" or "Calcium-rich," with some samples showing an influence of 
magnesium, which could indicate waters originating from rock formations containing limestone or 
dolomite. Anions (Bottom right triangle : Cl⁻+NO₃⁻, CO₃²⁻+HCO₃⁻, SO₄²⁻) : The points are mostly 
concentrated towards the central area but tend to align towards Cl⁻+NO₃⁻, indicating a certain 
predominance of chlorides and nitrates in the water samples. There are also points close to 
CO₃²⁻+HCO₃⁻, indicating a significant presence of bicarbonates. 

Central diamond: The points are predominantly located in the "Sodium and potassium chloride 
or sodium sulfate" zone, classifying the water as sodium and potassium chloride, which means that 
sodium (Na⁺) and potassium (K⁺) ions are dominant, in association with chlorides (Cl⁻). This 
composition is typical of water from aquifers influenced by geological formations containing salt or by 
saline contamination, such as in coastal areas. 

 
Figure 2. Piper diagram showing the chemical compositions of groundwater. 

 
4.2 Correlation matrix analysis. 
The correlation matrix (fig.3) provides a synthetic view of the relationships between different 

analysis parameters. The strong correlations between conductivity, magnesium, calcium, potassium, 
sodium, and bicarbonates suggest intense carbonate dissolution, such as calcite and dolomite, leading to 
an increase in water hardness. Additionally, significant links observed between bicarbonates, 
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magnesium, chloride, and sulfates indicate complex geochemical processes related to the dissolution of 
carbonate and evaporite minerals, as well as ionic exchanges. Similarly, the strong correlation between 
sodium and chloride is mainly due to the fact that they are often present together in the form of dissolved 
salt in water (NaCl), which confirms the linear relationship observed in the correlation matrix. However, 
the weak correlation observed between sulfates and chlorides suggests that these elements could 
originate from different sources or have undergone distinct geochemical processes. 

Lastly, the very narrow relationship between nitrates and other elements, with this weak 
correlation generally indicating that nitrates have their own dynamics, different from those of other 
elements. Additionally, nitrogen fertilizers are a major source of nitrates in groundwater, and their 
application can vary considerably in time and space, which may weaken the correlations with other 
parameters. 
 
 

 
 

Figure3. correlation matrix of the groundwater quality parameters. 
 
4.3 Principal component analysis. 
 
The overall Kaiser-Meyer-Olkin (KMO) value is 0.706, which is less than 0.5, confirming the 

validity of applying PCA. According to the selection criteria, factors with eigenvalues greater than 1.0 
were considered in this study. Two principal components (PC1, PC2) were extracted from the 
groundwater quality parameters, accounting for 70.35% of the total variance. 
The eigenvalues, proportions of total variance, and cumulative proportions of variance associated with 
each principal component are tabulated in Table 2. The rotated factor loadings for the initial two 
principal components are graphically represented in Figures 4. 
 

Table 2. Calculated eigenvalues and variance of each variances. 
 

 

 PC1 PC2  
Eigenvalues 

% of variance 

Cumulative % 

5.66207164        

56.6207164 %                      

56.62072 % 

1.27293290        

13.7293290 %                     

70.35005 %   
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Figure.4 Variance of rotated factor loadings in Varimax rotated principal component analysis. 
 
La PC1 représentait 56.6207% de la variance totale. Elle était fortement influencée par le 

K, les HCO3
-, le SO4, TH et le Ca2+, la combinaison de ces facteurs expliquait la plus grande part 

de la variance dans l'ensemble de données. Ces variables sont peut-être influencées par des 
processus géochimiques similaires ou par des sources communes de pollution ou de minéralisation, 
ce qui entraîne leur forte influence collective sur la première composante principale (PC1) (Soltani, 
Asghari Moghaddam et al. 2017). 

La PC2 révèle un autre schéma de variation dans les données, distinct de celui de la PC1, et met 
en évidence l'influence de ces ions et de la conductivité électrique sur la qualité de l'eau analysée, par 
exemple, la présence de Cl-, Na2+, et une conductivité élevée pourraient être associées à une origine 
commune, comme l'intrusion d'eau salée ou une source de pollution industrielle. De même, les 
concentrations de Mg2+ et NO3- pourraient être liées à des processus agricoles ou à la dissolution de 
minéraux spécifiques. 

 
5. Conclusion. 
This work analyzed the groundwater quality in the Guelma region of Algeria using multivariate 

statistical methods, including the correlation matrix, Piper diagram, and principal component analysis 
(PCA). The study revealed complex interrelations between various physicochemical parameters, 
suggesting geochemical processes influenced by natural and anthropogenic factors. Strong correlations 
between certain ions, such as sodium and chloride, as well as the identification of mixed hydrochemical 
types, indicate potential pollution sources, such as saltwater intrusion or agricultural contamination. The 
PCA simplified these complexities by highlighting the most influential variables, which could serve as 
key indicators for monitoring water quality. Overall, the results suggest that the groundwater chemistry 
in this region is significantly impacted by human activities and local geological conditions, calling for 
sustainable management and continuous monitoring to protect this vital resource. 
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